

1

I Abstract of Thesis

Elastic container platforms like Docker, Kubernetes and Swarm Mode have been
become increasing popularity in the last years. These platforms can be used to deploy
cloud-native applications (CNAs) into cloud infrastructure with microservices
architecture. However, the deployments are varied among different platforms.
Therefore, a domain specific language (DSL) which can achieve multi-cloud
deployment was developed as part of the research project Cloud TRANSIT. In this
project, the Unified Cloud Application Modelling language (UCAML) has been
extended. This thesis has two major purposes: (1) to introduce the background of
UCAML, including Cloud Computing, Microservices, container, CNAs and Container
Orchestration. (2) to implement a graphical user interface (UCAML-GUI) to describe
CNAs for multi-cloud deployments. This UCAML- GUI is implemented as a
web-application by using the MVC design pattern. It can be used to create and edit
CNA descriptions with UCAML format, then export it as platform specific description
file with Model-to-Model (M2M) transformation.

2

II Table of Contents

I Abstract of Thesis .. 1

II Table of Contents .. 2

1 Introduction ... 4

2 Related work and background .. 6

2.1 Cloud Computing ... 6

2.2 Microservice and Container ... 8

2.2.1 Microservices .. 8

2.2.2 Containers ... 9

2.3 Cloud Native Applications ... 11

2.4 Container Orchestration ... 12

2.4.1 Docker Swarm Mode .. 12

2.4.2 Kubernetes .. 12

2.5 UCAML (Universal Cloud Application Modeling language) 14

2.5.1 Domain Specific Language ... 14

2.5.2 Features ... 15

3 Specification ... 17

3.1 Project description ... 17

3.2 Functional Requirements ... 17

3.2.1 Create and load UCAML .. 17

3.2.2 Avoid repetition ... 17

3.2.3 Dynamic form ... 17

3.2.4 Validation .. 18

3.2.5 Model-to-Model generation .. 19

3.3 Non-functional Requirements .. 19

3.3.1 Extendibility and reusability ... 19

3.3.2 Fault tolerance ... 19

3.3.3 Responsive design ... 20

3.4 Use case diagram ... 20

4 Implementation ... 22

4.1 Technology used .. 22

3

4.1.1 Technology .. 22

4.1.2 Framework .. 23

4.1.3 MVC design pattern .. 24

4.2 Prototype implementation .. 25

4.3 Model ... 28

4.4 View ... 29

4.4.1 Navigation bar ... 29

4.4.2 Main page.. 30

4.4.3 Usage page .. 30

4.4.4 Responsive design ... 31

4.4.5 Usability in the view ... 32

4.5 Controller ... 33

4.5.1 Structure of Controller .. 33

4.5.2 Validation in the Controller ... 33

4.6 Model-to-Model transformation .. 34

4.7 Instructions of this web application ... 34

4.7.1 Main page.. 34

4.7.2 Usage page .. 35

4.7.3 Template window .. 36

5 Test and Evaluation ... 37

5.1 Boundary Testing ... 37

5.2 Usability test .. 38

5.3 Evaluation .. 40

6 Conclusion and future work .. 41

7 Acknowledgments ... 42

8 Bibliography ... 42

9. Appendix A - List of figures... 43

10. Appendix B - List of tables .. 44

4

1 Introduction

Generally, most traditional monolithic applications can run in cloud platform without
any change only if this cloud platform supports corresponding computer architecture
and operating system. However, this kind of working pattern cannot utilize virtual
machine efficiently, which ignored what the cloud platforms are capable of. For the
benefits of cloud platform and achieve distribution of computer resource on demand
and elastic characteristic, cloud-native applications emerged.

A cloud-native application (CNA) is a distributed, elastic and horizontal scalable
system composed of (micro)services which isolates state in a minimum of stateful
components (Kratzke and Quint, 2017). Developers must break down applications
into separate services that can run on several servers. Apparently, this kind of design
pattern is designed specifically for cloud computing architecture and is also clear to
achieve elasticity and reliability, now we refer to this as microservices. To encapsulate
each microservice instance so that it can be easily started, stopped and migrated, a
way was adopted to package a microservice into a “container” that would be easier to
manage than a full virtual machine image (Gannon et al., 2017). It is a lightweight,
stand-alone, executable package of a piece of software that includes everything
needed to run it: code, runtime, system tools, system libraries, settings. In addition,
Containers isolate software from its surroundings such as differences between
development and staging environments, which help reduce conflicts between teams
running different software on the same infrastructure (Docker.com, 2018).

Figure 1: The Google Trends of Docker and K8s (Google Trend, 2018)

5

As shown on Figure 1, it shows the Google Trend of Docker and Kubernetes in recent
5 years. Obviously, elastic container platforms like K8s, especially Docker have
become increasing popularity. However, it is not easy to describe this service due to
its extensive and platform specific properties. Therefore, a domain specific
language(DSL) for describing cloud-native applications was developed by team of
Cloud TRANSIT project in University of Applied Science in Lübeck. This DSL can
transform a special format (UCAML1) to platform specific format (e.g. Docker,
Kubernetes). The UCAML framework determines how a CNA can be described in
UCAML format and offers the possibility to test UCAML format CNA descriptions
and transform them to a platform specific format. However, there is no possibility to
describe a CNA in UCAML format without editing a text file only. Therefore, in this
work a graphical user interface application, called UCAML-GUI, was developed to
provide a more user-friendly way to describe CNAs.

This thesis intends to introduce the relevant background of UCAML and record the
integral developing processes for UCAML-GUI. The UCAML-GUI was implemented
as a web-service, which could describe cloud-native application and validate the
user’s input automatically. The thesis is structured as follows: the chapter 2 introduces
related work and background, including Cloud Computing, container and
microservices, Cloud-native applications, Container Orchestration and UCAML. In
chapter 3 we provide a specification for UCAML-GUI. The implementation process is
described in chapter 4. In chapter 5 we show the result of test and make an analysis.
Finally, we conclude our finding in chapter 6.

1. https://bitbucket.org/cloudtransit/ucaml

6

2 Related work and background

2.1 Cloud Computing

Cloud computing is a kind of model that enable ubiquitous, on-demand network
access to shared pools of configurable system resources and higher-level services that
can be rapidly provisioned and released with minimal management effort (Mell and
Grance, 2011). Sharing of resources is the key factor for cloud computing to achieve
coherence and economies of scale. It is also one of essential characteristics of cloud
computing.

According to the NIST definition (Mell and Grance, 2011), Cloud computing exhibits
five essential characteristics:

 On-demand Self-service. The end user can provision computing resources,
 such as server time and network storage on demand and without interaction
 of service providers.

 Broad network access. The computing resources are available over the
 network and accessed through standard mechanisms. For example, the users
 just need to log in with an internet connection and then acquire the service
 from the service providers despite which devices are used.

 Resource pooling. The provider’s computing resources are pooled to serve
 multiple consumers according a specific multi-tenant model, which enables
 consumers to enter and use data in the cloud from any location, at any time.

 Rapid elasticity. The providers can scale up or scale down according to the
 resources demand of consumers. For the providers, it eliminates the waste of
 resources (e.g., storage, processing, memory) in the inactive local
 infrastructure. For the consumer, the available capabilities usually appear to
 unlimited.

 Measured service. The resource usage can be monitored, controlled
 automatically by cloud systems and providing transparency for
 providers and consumers. The consumers only pay what they use.

As shown in Figure 2, Cloud Computing can be broken down into three services
models:

7

Figure 2: Service models of Cloud computing (Research Hub)

 Infrastructure as a Service (IaaS). In the IaaS model, consumers are provided
with elements of infrastructure such as Server, storage, virtualization and other
fundamental computing resources. Therefore, they can deploy and run arbitrary
software, including operating systems and applications.

 Platform as a Service (PaaS). In the PaaS model, consumers are provided with
capabilities to run their own applications or third-party applications. These
capabilities refer to operating systems, programming language, service and tools
supported by providers. Lower level elements of infrastructures don’t need to be
concerned by consumer.

 Software as a Service (SaaS). In the SaaS model, consumers are provided with
applications (e.g. needed for business) running on a cloud infrastructure. These
applications are accessible from various devices like browser or mobile. The
consumers need not be concerned about underlying cloud infrastructure including
storage, operating systems and another running environment.

In addition to service models, (Mell and Grance, 2011) also defined cloud computing
with four deployment models according to different usage for various agencies.

Private Cloud
The cloud infrastructure is configured to be dedicated to a single organization that
includes multiple consumers (e.g., business units). It may be owned, managed, and
operated by an organization, a third party, or some combination of these, and may be
present on or off site.

8

Community Cloud
Community Cloud is exclusively used by a specific community of user who may
come from different organizations but have common concerns (e.g., tasks, security
requirements, policies, and compliance considerations). It may be owned, managed,
and operated by one or more community organizations, third parties, or a combination
of them.

Public Cloud
Public cloud provisions the cloud infrastructure for open use. It may be owned,
managed and operated by a commercial, academic or governmental organization, or a
combination thereof. It exists in the cloud provider's premises.

Hybrid Cloud
The Hybrid Cloud consists of two or more different cloud infrastructures (private,
community or public). They are still unique entities but are bound together through
standard or proprietary technologies to implement data and applications Portability
(e.g., cloud bursting for load balancing between clouds).

2.2 Microservice and Container

2.2.1 Microservices

Microservices is an architecture approach that can deploy applications and services in
the cloud. Each microservice is an application with single a function and must be
managed, scaled, upgraded and restarted independent of other services. The
communication mechanisms used by microservice systems are varied: they include
Representational State Transfer web service calls, remote procedure call (RPC)
mechanisms such as Google’s Swift, and the Advanced Message Queuing Protocol
(Gannon et al., 2017). In addition, microservices use different programming
languages, different data storage technologies, and keep a minimum centralized
management.

Microservices vs Monolithic architectures
In Figure 3, there are two big differences between microservices and Monolith. Firstly,
applying microservices means building applications from separate services running in
different processes. Therefore, microservices can be deployed independently. In each
service any technology or infrastructure can be used. Contrarily, in a monolith all
functionalities are put into a single process (Buzachis Aris, 2014), isolated poorly and
interacted through in-process method calls.

Secondly, in terms of scalability, microservices also show its advantages. If one

9

functionality need be scaled, the monolith including multiple servers and other
components must be scaled (Buzachis Aris, 2014), which waste resources and
increase complexity. But extending microservices is easy. Since all services are
independent applications, we can only scale specific services without disturbing
others.

Figure 3: Microservices vs Monolith (Aris, 2014)

The usage of microservices architecture is increasing dramatically, because most
traditional applications who are developed with monolithic architectures are difficult
and expensive to maintain, hard to extended. Therefore, if developers want to deploy
them into the cloud, they tend to split the applications into smaller microservices
which can be maintained separately, scaled separately, or thrown away if needed
(Thönes, 2015).

2.2.2 Containers

To encapsulate each microservice instance so that it can be easily started, stopped, and
migrated, containers are used (Gannon et al., 2017). Container is a lightweight,
stand-alone, executable package of a piece of software that includes everything
needed to run it: code, runtime, system tools, system libraries, settings. (docker.com,
2018). And containers can offer both efficiency and speed compared with standard
virtual machine. They are lightweight and designed to run anywhere. Therefore,
Container is optimum and ideal way for enabling microservices application
development.

10

Containers vs VMs
Containers (left in the Figure 4) are isolated, they share the underlying host OS and
infrastructures, and only package the necessary application and binary files. Each
virtual machine (right in the Figure 4) runs its own guest operating system instance
and provides its own libraries and binary files. Besides, Containers take up less space
than VMs (container images are typically tens of MBs in size) and start almost
instantly. Containerization is, in effect, OS-level virtualization, as opposed to VMs,
which run on hypervisors with a full embedded OS (Bob Tarzey, 2016).

Figure 4: Containers vs VMs (docker.com, 2018)

Docker
Docker is an open source program that designed to make it easier to develop, deploy,
and run applications by using containers. The Linux kernel provided an easy solution
to the encapsulation problem by allowing processes to be managed with their own
namespaces and with limits on the resources that they used. This led to standards for
containerizing application components, such as Docker (Gannon et al., 2017).

A complete docker application usually is composed of following parts: docker client,
docker Daemon, docker image and docker container. Since client-server model is used
in docker, docker daemon in server would accept the request from client. A Docker
container is an instance of a docker image, which is similar to the class and instance
in object-oriented programming.

In this project, some simple commands in docker are required. For example:

 Command: $> docker run busybox echo 'Hello, World!'
 Output: Hello, World!

This command is telling docker to run busybox image. If this image is not present,
docker will attempt to fetch an image named “busybox” from public docker hub. Then

11

Docker sets up the layers of this image, all the cgroups and namespaces for this
container environment, and executes “echo ‘Hello, World!’” Also, we can use $>
docker pull fedora to directly fetch an image named “fedora” from public docker
hub. In addition, $> docker images will list all available images locally. There are
many more docker commands like these. To see them all, see $> docker help
(Vincent Batts, 2014).

2.3 Cloud Native Applications

According to (Kratzke and Quint, 2017): “A cloud-native application (CNA) is a
distributed, elastic and horizontal scalable system composed of (micro)services which
isolates state in a minimum of stateful components. The application and each
self-contained deployment unit of that application is designed according to
cloud-focused design patterns and operated on a self-service elastic platform”.

Generally, the CNA natively utilizes the services and infrastructure provided by cloud
computing providers such as Amazon EC2 or Force.com. In other words, the CNAs
are completely based on the cloud computing model, including its essential
characteristics and service models. Thus, its properties that are frequently cited and
listed in the following are somewhat similar to Cloud Computing’s characteristics.

1. CNAs typically run on a real global scale. Although ordinary websites can be
accessed anywhere in the Internet, the real global scale means more. This
means that the application's data and services are replicated to the local data
center, minimizing interaction delays (Gannon et al., 2017).

2. CNAs must scale well with thousands of concurrent users. This is another
parallel dimension that is orthogonal to the scale of the data needed for global
scale distribution. It requires careful attention to synchronization and
consistency in distributed systems (Gannon et al., 2017).

3. CNAs assume of constant infrastructure mobility and failure. This concept
is the basis of the original design of the Internet Protocol, but applications
built on a single PC, mainframe or supercomputer assume that the underlying
operating system and hardware are rock solid. Therefore, when these
applications are ported to the cloud, they can fail due to the first failure in the
data center or network. Even if the hardware or network has a very low failure
rate, the law of large numbers can guarantee that when you try out the scale of
the world, something is always broken or about to burst. (Gannon et al., 2017).

4. CNAs are designed so that upgrades and tests can be performed seamlessly
without interrupting production. Although not every cloud native
application is intended for millions of concurrent users worldwide, most
applications are designed for continuous operation. (Gannon et al., 2017).
But all applications need to be upgraded without interrupting normal
operations and then to test the upgrade.

12

5. Security is also a very important principle in CNAs. As we can see, many
CNAs are built from many small components and these components must not
have sensitive credentials. A firewall is not enough because access control
needs to be managed at multiple levels of the application. Security must be
part of the underlying application architecture (Gannon et al., 2017).

2.4 Container Orchestration
The appearance of the container has completely changed the way that cluster is
released and operated. Because developers don't need to consider the consistency of
environment. However, the usage of the containers brought some new problems.
Firstly, although container is lighter than virtual machine, it still requires orchestration
system to operate efficiently and reliably. The container resources need to be
scheduled and the life cycle needs to be managed systematically. Secondly, it is still
hard to scale for a cluster of containers. To solve these problems, elastic container
platforms like Docker swarm, Kubernetes and Apache Mesos were born and there is a
trend to use them by developers. Following paragraphs will mainly introduce Docker
swarm mode and Kubernetes.

2.4.1 Docker Swarm Mode

Usually people are confused about Docker Swarm and Docker Swarm Mode. In fact,
they both are container orchestration tools. Docker swarm is a standalone product of
Docker while Swarm mode is integrated into the Docker engine in the Docker 1.12
release.

Compared with Docker Swarm, Swarm mode introduces the concept of services and
provides many new features. Not only it can cluster and schedule containers, but also
can allow user to control the entire lifecycle of application. In addition, Swarm Mode
is easy to learn and convenient to use since it is part of Docker engine.

2.4.2 Kubernetes

Kubernetes (K8s), the third container-management system developed at Google, was
conceived of and developed in a world where external developers were becoming
interested in Linux containers, and Google had developed a growing business selling
public-cloud infrastructure. Furthermore, K8s is open source program, which were
developed as purely Google-internal systems (Burns et al., 2017). Now it is
maintained by the Cloud Native Computing Foundation.

13

Figure 5: The Kubernetes Layout (Rensin, 2015)

According to (Rensin, 2015), K8s follows the master-slave architecture (slave also
named “node”), which has been shown in Figure 5. As can be seen, master compose
of three main items: API Server, Etcd and Controller Manager Server.

API Server. Almost all components on the master station and the node complete their
tasks by making API calls. These are handled by the API server running on the master
(Rensin, 2015).

Etcd. Etcd is a service, which aims to maintaining and replicating the current
configuration and operational status of the cluster. It is implemented as a lightweight
distributed key-value store and was developed in the CoreOS project (Rensin, 2015).

Controller Manager Server. The server’s task is to schedule containers on the target
node. They also ensure that the correct amount of these things is always running
(Rensin, 2015).

A master has charge of management of all nodes while each node must run the two
important processes and some pods.

Kubelet. It is a special background process which can be used to process the tasks
delivered by the master to parent node and manage the Pod and its container. The
Kubelet will register the node information on the API Server, report the usage of the
node resources to the Master periodically, and monitor the container and node
resources through the cAdvisor (Rensin, 2015). Kubelet can be understood as an agent
in the Server-Agent architecture, a pod manager on Node.

Proxy. It is a simple web proxy that separates the IP address of the target container
from the name of the service it provides (Rensin, 2015).

14

Pods. Pods are collection of containers and volumes that are bundled and scheduled
together because they share a common resource—usually a filesystem or IP address
(Rensin, 2015). In a conclusion, Kubernetes is managing in pod level instead of
container level.

2.5 UCAML (Universal Cloud Application Modeling language)

2.5.1 Domain Specific Language

Currently there are some Domain Specific Languages (DSL) that can describe the
Elastic container platform (ECP). The result of (Quint and Kratzke, 2018) has shown
that Docker Compose and Kubernetes DSL can fulfill most of requirements for ECPs.
However, they are both designed for specific elastic container platform (Docker
Swarm or Kubernetes). Therefore, it is necessary for them to create a new DSL, which
not only can support different elastic container platforms, but also provide the
maximum flexibility in covering all the mentioned and derived requirements (Quint
and Kratzke, 2018). And this new DSL is called UCAML (Universal Cloud
Application Modeling language).

Figure 6: Deploying a CNA with M2M (Quint and Kratzke, 2018)

15

The UCAML is a model-to model (M2M) generator whose task is to deploy arbitrary
Cloud native applications on specific elastic container platforms. The Figure 6 has
shown that this universal DSL can be transformed into platform specific formats, such
as Kubernetes, Swarm, Mesos, Nomad and more. Initially, this core language model is
implemented as a declarative and internal DSL in Java. But to meet the demand for a
representation of this core language model without the overhead of a full purpose
language like java (Quint and Kratzke, 2018), the ruby is used to describe this
language model and define the related features.

2.5.2 Features

Generally, the UCAML has following features:

Containerized deployments. The containers are the deployment units of a service and
the UCAML is designed to describe and label a containerized deployment of
discoverable services (Quint and Kratzke, 2018).

Application scaling. Elasticity and scalability both are important characteristics of
cloud computing. Therefore, the UCAML can describe elastic services.

Compendiously. The UCAML intends to be much more lightweight than other DSL
approaches. Its clear focus is to define an executable architecture of cloud
applications without the need to consider complex technical details of platform or
infrastructure specifics.

Multi-cloud-support. The UCAML can support multi-cloud operation, which
meanwhile increases the using of hybrid cloud.

Independence. Using UCAML one can define an executable macro architecture of a
cloud applications in a universal definition format and transform this format into
container platform specific definition formats. In a word, it is independently from
specific elastic container platform or cloud infrastructure.

Elastic Runtime Environment. The UCAML must define applications being able to
be operated on an elastic runtime environment because the UCAML supports
model-to-model transformation over different elastic containers platforms (Quint and
Kratzke, 2018).

These features are described by defining some parameters in UCAML. For example,
Figure 7 shows what return in a definition of application concept. Apparently, one
application can have a namespace, one or more services and a set of optional
parameters that can describe features such as Volumes, Scaling Rules and Scheduling
Constraint. Besides that, each service also can define different parameters to describe

16

features. But each service can only define one container.

Figure 7: Application description

Figure 8 is an instance of UCAML file, which describe an application called
“prime-service-app”. Only one “prime-service” service is defined in this application.
This service requests 100 Millicores CPU, 256 Megabytes memory and 2 Gigabytes
ephemeral storage. Format similarly, it also defines some features like scaling rule,
ports and one container. The namespace, image and CMD are included in this
container.

Figure 8: Prime-service-app instance

17

3 Specification

3.1 Project description
This thesis is based on the research project Cloud TRANSIT. Cloud TRANSIT is
about to provide technological means manageable for Small and Medium sized
enterprises (SME) who are facing special problems with cloud adoption. These
solutions can avoid existential vendor lock-in situations which are still a major cloud
adoption obstacle of cloud computing after 10 years (Kratzke et al., 2017). UCAML is
one of these technological means provided by Cloud TRANSIT. It is a domain
specific language which can determine how a CNA can be described in UCAML
format and offers the possibility to test UCAML format CNA descriptions and
transform them to a platform specific format.

Now we are developing a user-friendly graphical user interface for UCAML to avoid
editing a text file. This graphical user interface will be implemented as a
web-application, so more SME users can have easy access to it without downloading
any software. We call this web-application “UCAML-GUI”. With UCAML-GUI,
users can create and load UCAML file, finally transform it to target elastic container
platform’s format (e.g. Docker, K8s).

3.2 Functional Requirements

3.2.1 Create and load UCAML

To deploy a CNA, specific parameters must be collected and described as UCAML
file. Therefore, the UCAML-GUI must include a HTML form for UCAML
transformation. In addition, the UCAML file must be also loadable and savable.

3.2.2 Avoid repetition

To avoid unnecessary effort on inputting same information, the UCAML-GUI must
provide choice for users to save and reuse templates, including all parameters and
services. This also results in better maintainability. For example, when the user
finished the configuration of one service, he can save this service as a template and
reuse it later.

3.2.3 Dynamic form

The form in the UCAML-GUI should be dynamic since the parameters in UCAML
are diverse and inconstant. One CNA can define several optional features (e.g.
Scheduling, request) in advance and have multiple services, each service can have
fixed feature (e.g. Name) and define several optional parameters to override the same

18

feature in CNA. Users can add parameter which is in the list to the form and delete it
whenever they want. Therefore, this form should be dynamic and flexible.

3.2.4 Validation

As was stated above, since the parameters have different types and value range, the
user’s inputs must be limited to correct range and validated. Following (Table 1) is the
list of parameters and requirements for the validation.

Table 1: Parameter list

Parameters Data Type mandatory Other requirements
Application name String ×
Volumes array
Volume name String ×
Volume type array ×
Volume nfs Hash
Volume git Hash
Volume secret Hash
Volume mountPath String
Labels Hash
Scheduling Hash
Environment Hash
Request array
Request cpu Integer × >0
Request memory Integer × >0
Request ephemeral_storage Integer >0
Scale Array
Scale min Integer × >0
Scale max Integer × >0
Scale targetCpu Integer >0 & <100
Service Array ×
Service name String ×
Service ports Array(Integer) × >1 & <65535
Service capabilities Hash
Service expose Array (Integer

hash)
 Exposed port must

belong to ports
Container name String ×
Container image String × Existing on docker-hub
Container cmd Array(String)

19

As can be seen, the first column in Table 1 has shown all private and common
parameters of application, service and container. The second column describe the data
type of parameters and the third column shows whether they are mandatory. Some sub
parameters are mandatory only if their optional parents are chosen (e.g. Request cpu
is mandatory if Request is chosen). The last column lists other special requirements
for corresponding parameter. In addition, every mandatory parameter cannot be empty.
Therefore, there are many parameters need to be validated according different
requirements.

3.2.5 Model-to-Model generation

After the data from client-side is transformed to UCAML file in server side, the
UCAML file will be transformed into platform specific formats. Till now the UCAML
supports Kubernetes and Docker Swarm. Thus, the CNA description must be saved as
UCAML file and also exported as platform specific file.

3.3 Non-functional Requirements

3.3.1 Extendibility and reusability

Right now, UCAML supports Kubernetes and Docker Swarm. However, it is planned
to support further container platform like Mesos, Nomad and so on. Accordingly, in
such case only slight change of UCAML-GUI must be made. Therefore, this
UCAML-GUI should be extendible and reusable to adapt new version that Mesos and
Nomad are compatible with. For example, in client-side new parameters can be
inserted into form and in server-side the UCAML generator is easy to accept new
feature.

3.3.2 Fault tolerance

This UCAML-GUI should keep operating properly in the event of the failure of its
components since the form in this website is dynamic and complex. To tolerate faults
caused by users, not only validation but also exception handling mechanism can be
applied to this UCAML-GUI. For instance, when the format of inputted parameter is
incorrect, or server fail to generate UCAML file, helpful feedback and a ruby log-file
should appear instantly.

20

3.3.3 Responsive design

Responsive design is currently a common requirement for website and even mobile
application due to the variety of devices. Therefore, this website should also support
different screen size. To ensure good operability on different screen, the contents and
positions of graphical elements must be displayed dynamically.

3.4 Use case diagram

As shown in Figure 9, the actor and use cases including their relationship are
visualized. In our case, the actor is UCAML-GUI user who plans to deploy
cloud-native applications. The Table 2 shows the list of use cases and their
descriptions.

Figure 9: Use case diagram

21

Table 2: Use case specification

Use Case Description
Create or edit a CNA A CNA can be created by filling the form.

Also, user can load a UCAML file and
edit it.

Load a CNA Load a UCAML file which contains a
description of a CNA from local disk.
This use case can extend to “Create or
edit a CNA” to update current CNA.

Define parameters In application or service layer, users have
choice to define or delete optional
parameters.

Define service The users can define one or more services
in an application. They can enter to
specific service page to specify every
feature.

Save and reuse template The users can save parameters and
service that they want to reuse later.

Export to target CAN platform
configuration file

The users can submit the form, and server
will generate the UCAML file and export
it to platform specific formats with M2M
transformation.

Browsing information of cloud-native
application

The users can learn some basic
knowledge of cloud-native application by
browsing this website.

22

4 Implementation

4.1 Technology used

4.1.1 Technology

The UCAML-GUI is designed as a web-application. Accordingly, the following
technologies were used:
-- HTML5, CSS and JavaScript for presenting UCAML-GUI.
-- PHP as server-side programming language.
-- ajax.js for the interaction of client-side and server-side.
-- Session for temporal storage of data.

Due to the diverse and dynamic features of CNAs, the way of storing and transferring
data need to be considered carefully. The Figure 10 (parameters and datatype are not
complete because the structure is too large) has shown the data structure of this
project. As can be seen, it is very complicated, including the relationship and their
datatype. Usually object-oriented programming and related data structure (e.g. list,
map) will be used to transfer data between server-side and client-side. However, it
would be more complex if they are used in this project. Because the database is not
required, and the data that need to be stored is only the templates of parameters and
services. In addition, the server only need to generate UCAML file after the reception
of form from client-side. Hence, JSON is considered a better way to store and transfer
data. In client-side, after the user submit the form, JSON will be generated
automatically in server-side. And it can have the same

Figure 10: Data structure (Not complete)

23

structure as the Figure 10. But the name of input must be special format. For example,
<input class="service0" name="services[0][name]" type="text">, the name means that this input
is the name of first service, “services[1][request][CPU]” means that this input is the
amount of CPU requested by user in first service. Therefore, JSON is an easier way to
store and transfer structured data in this project.

The following programs and (web-) tools are also used to complete this project:
-- Balsamiq Cloud for designing prototype of UCAML-GUI.
-- Astah Professional for modelling with UML.
-- JetBrains PhpStorm as the IDE for programming.
-- Microsoft PowerPoint was used as form design.

4.1.2 Framework

Firstly, bootstrap1, currently a very popular front-end framework, is used in the
client-side. It contains HTML- and CSS- based design templates for forms, buttons,
navigation and other interface components, which is richer and more abundant than
other open-source front-end web frameworks. Furthermore, Bootstrap supports
responsive web design. Its grid system and other utilities can help to design
responsive web efficiently. In addition, Bootstrap is compatible with many
mainstream browsers such as latest Google Chrome, Firefox, Safari, Internet Explorer
and so on.

Secondly, jQuery2, which is a fast and concise JavaScript framework. It is also an
excellent JavaScript code library (or JavaScript framework) after Prototype. The
purpose of jQuery design is "write Less, Do More", which advocates writing less code
and doing more (Chaffer and Swedberg, 2010). It encapsulates JavaScript's common
functional code, providing an easy JavaScript design pattern that optimizes following
features:

Get document elements quickly
The jQuery selection mechanism is built on the CSS selector, which provides the
ability to quickly query elements in the DOM document, and greatly enhances the
way JavaScript gets the page elements.

1. https://getbootstrap.com/
2. https://jquery.com/

24

Provide dynamic effects
jQuery has a series of animation effects that can be used to create beautiful web pages.
Many websites use jQuery's built-in effects, such as fade effects, element removal,
and other dynamic effects.

Create AJAX no refresh page
AJAX can develop very sensitive and non-refreshing web pages (Chaffer and
Swedberg, 2010). Especially when developing server-side web pages, such as PHP
web sites, it is necessary to communicate with the server from and to, if AJAX is not
used, each time the data update must Refresh the page. But if it is used, AJAX effect
can perform a partial refresh on the page to provide dynamic effects.

Provides enhancements to the JavaScript language
jQuery provides enhancements to basic JavaScript structures such as element iteration
and array handling. (Chaffer and Swedberg, 2010).

Enhanced event processing
jQuery provides a variety of page events, it can avoid the programmer to add too
much event processing code in the HTML, and most importantly, its event handler
eliminates a variety of browser compatibility issues. (Chaffer and Swedberg, 2010).

Change web content
jQuery can modify the content of a web page, such as changing the text of a web page,
inserting or flipping a web page image. jQuery simplifies the way that JavaScript code
needs to be processe

4.1.3 MVC design pattern

Figure 11: The MVC pattern in web application (Pop and Altar, 2014)

25

The Model-View-Controller (MVC) design pattern is to divide an application into
three main categories: the model of the main application domain, the presentation of
data in that model and user interaction (Pop and Altar, 2014). This designed pattern is
used in this project because MVC is such a good fit for web application development
which combine several technologies usually split into a set of layers.

In Figure 11, the Model layer is responsible for the business logic of an application
and manages all tasks related to data such as session state, data source structure and so
on. The view layer is responsible for graphical user interface management, which
include all forms, buttons, graphical elements and all other HTML elements. By
separating the model from view, developers are clearer about what their task is and
the developer for the model part cannot alter the graphical interface casually. It also
reduces the risk of error (Pop and Altar, 2014). The controller is responsible for event
handling. A controller accepts request and prepares the data for a response. In other
words, it can transfer data from model to interface and vice versa.

4.2 Prototype implementation
The prototype implementation for this website experienced two versions. In first
version (as shown in Figure 12), basic design and structure of this website are
determined: first page (about page) is to describe the UCAML and CNAs briefly,
giving user a rough idea about they are doing. The rest pages are for the usage of
CNA definition and M2M generator according to the three layers of UCAML.
Apparently, this website is divided into displaying page and functional pages. In
functional page, the 3D model of application is applied to interaction so that users can
feel which layer they are.

26

Figure 12: Prototype version 1

27

Following figures (Figure 13) are the second version of prototype, which removed the
3D model due to its impracticability. To make users focus more on the form, it is
moved to the centre of page. Because each service has only one container, container
layer is combined with service layer. In addition, three big icons for application,
service and container are added to indicate users which layer the users are and show
the complete process of this deployment.

28

Figure 13: Prototype version 2

4.3 Model

In Figure 14 we show the structure of model. As can be seen, in this project Session
and JSON are the main technologies to store the data. When the Controller receive a
request from View to store a template, an array of template will be transferred from
controller to the model and store it in the sessions according to its data structure. The
sessions can keep two types of templates, one is for single parameters and the another
one is for service since the structure of service is more complicated than single
parameters. Each parameter can have one or more templates, which contains the name
and category of this template. When the controller receives the command to request a
template from model, an array of corresponding template will be transferred to
controller and the controller can load this template to the view. JSON is used to store
and transfer the whole data of form. When user submit the form and the form is
validated, then the JSON will be generated in the server-side and be transformed to
UCAML file later.

29

Figure 14: Structure of model

4.4 View
From the perspective of programming languages, the view is composed of three
important files: index.html, style.css and index.js. From the perspective of design, the
view is composed of navigation bar, main page and usage page. In addition, the
implementation of responsive design and usability are also documented in this
chapter.

4.4.1 Navigation bar

The navigation bar (Figure 15) consists of two buttons for moving to home and usage
page conveniently. The picture in the centre is the logo of Cloud Transit team. This
navigation bar is derived from the bootstrap’s navigation bar, so it can change
responsively according to the size of screen. In addition, animation is added. When
user scroll down the page, the navigation bar will get short smoothly and a black line
will appear to separate the navigation bar and pages (Figure 16).

Figure 15: Original navigation bar

30

Figure 16: Navigation bar after scroll down

4.4.2 Main page

The main page firstly provides users the introduction of UCAML. The introduction
combines the text and pictures so that users can fully understand the description.
Secondly, it presents some concepts of CNAs, including applications, services and
containers. These concepts are related to the three layers of the deployment. Therefore,
it would be easier for users to input the following form after browsing the main page.
In addition, the main page used the grid system of Bootstrap to place the HTML
elements. Thus, this page is complete responsive as the size of screen changes.

4.4.3 Usage page

The usage page provides a form for users to create a UCAML file so that server-side
can deploy CNAs according to this UCAML. The form is divided to some sub tables
to meet the requirement that one application can deploy one or more services.
Therefore, as shown in Figure 17, there is a main table for application layer and one
or more sub tables for each service. A “select” input element is added in this form so
that users can choose optional parameters. Because most parameters’ data type is
array and the lengths are inconsistent, the minus icon, plus icon and delete icon are
used to add, delete new items for parameter. The tag icon can open the template
window where uses can save or reuse a template for current parameter. In addition,
the “go” icon can help user enter to the service layer.

Figure 17: The structure of form

31

4.4.4 Responsive design

To make this website responsive to the screen’s size, three main technologies are used.
Firstly, the bootstrap’s navigation component helps to change the style of navigation
bar while the screen’s size is changing. The items in navigation bar are hidden and
user can click the toggle to uncover them. Secondly, the grid system in bootstrap helps
to place specific elements properly according to the screen’s size. Thirdly, the
@media property also can make different style rules to adapt the screen’s size.
Following is the appearance of this website in small screen (e.g. mobile phone).

Figure 18: Responsive design in small screen

32

4.4.5 Usability in the view

Match between system and the real world
In this website, there are buttons with icons to show the functions more vividly. For
example, as shown in Figure 19, the icons for application, service and container are
from real stuff or something related to.

Figure 19: Match between system and the real world

Consistency and standards
In Figure 20, it shows that the layout of application layer and service layer are almost
the same. Therefore, users can easily find the specific parameters and icons they want
to operate no matter which layer they are.

Figure 20: Consistency and standards

Help users recognize, diagnose, and recover from errors
If the user input some illegal characters, error message dialogue will be invoked and
show the user where is wrong and how to solve it. For example, in Figure 21 the port
that user inputted exceed the legal range, when users leave this text field the error
dialogue will show that it should be an integer and the range should be from 1 to
65535. In addition, the colour of font will be red to make it more conspicuous.

Figure 21: Error detection and recover

33

4.5 Controller

4.5.1 Structure of Controller

Figure 22: Structure of Controller

The figure 22 has shown the structure of controller, including its interaction with
model and view. Controller is divided into two parts. The first part is view controller,
which consists of index.js and validation.js. Index.js mainly control the update of
view according the user’s request. For example, the user needs to add an optional
parameter or load a UCAML file to the form. Validation.js is to validate the format of
parameters input by users and give feedback instantly. View controller has not
permission to access to model. Therefore, the task of interaction with model layer is
distributed to Model controller, which has only one MController.js file. The
MController.js is to accept some requests that referred to model layer from view and
response to view by updating the view. For example, one user wants to use a template,
after controller accepts this request, it would get the template list from model and load
it to the view.

4.5.2 Validation in the Controller

The validation of form is completed by validation.js. It has three important functions:
checkEmpty (), checkInteger () and validateCurrentTable (). checkEmpty () is to
check whether some necessary parameters are empty. checkInteger () is to check
whether parameter like ports, memory is integer. But there are some deeper
validations for special parameter such as target CPU (>0 & <100) inside this function.
The validateCurrentTable() function is to validate the whole service before the user
leave service layer. Users are not allowed to leave service layer except this function
return true.

34

4.6 Model-to-Model transformation
The M2M transformation is mainly implemented by toUcaml.php. toUcaml()
function will generate the UCAML file from the form and then a DOS command
which can transform UCAML to Kubernetes or Docker format is invoked by using
PHP function exec(). The final file would be downloaded in client-side automatically.
Which format the UCAML will be transformed to is decided by users.

4.7 Instructions of this web application

4.7.1 Main page

The main page is the first page that users can see when open this website. It is mainly
about introduction of UCAML and CNAs. See more in Chapter 4.4.1 and 4.4.2.

Figure 23: Main page

(1) Main page button, can move to main page quickly when clicked.
(2) Usage page button, can move to usage page quickly when clicked.
(3) Introduction of CAN.
(4) User can click it and move to usage page automatically.

1

2

4

3

35

4.7.2 Usage page

This page is intentionally designed for description of CNAs. Users can define their
CNAs then a UCAML file will be generated in server-side and users can export it to a
target platform format. More information can be found in chapter 4.4.3.

Figure 24: Usage page (application layer)

(1) Users can click “go” icon to move to service layer after the service name is

defined.
(2) Users can click it to add corresponding parameters.
(3) Users can click it to open the template window where they can save or use a

template.
(4) Users can click it to delete an item of corresponding parameter.
(5) Users can click it to load a UCAML from their local disk.
(6) Users can click it to select optional parameters that they want to define.
(7) Users can click it to save this form as UCAML and transform this UCAML

file to Docker format.
(8) Users can click it to save this form as UCAML and transform this UCAML

file to Kubernetes format.

1

2

3

4

5

7

 8

6

36

4.7.3 Template window

Users can click the tag icon to open corresponding parameters’ template window
(Figure 25). They can save or reuse a template in this window.

Figure 25: Template window

(1) Users can click it to save current parameter as a template.
(2) Users can click it to use a template.
(3) Users can click it to close the template window.
(4) Users can input the template name for the parameter which they want reuse.
(5) Users can click it to save this template.
(6) Users can select a template which they want to use.
(7) Users can click it to use this template and the data of this template will be

loaded in the form.

5

7

6

4

1

3

2

37

5 Test and Evaluation

5.1 Boundary Testing
Boundary testing is the process of testing between extreme ends or boundaries
between partitions of the input values. As shown in Figure 26, the basic idea in
boundary value testing is to select input variable values at their Minimum, just above
the minimum, a nominal value, just below the maximum and maximum. In Boundary
Testing, Equivalence Class Partitioning plays a good role. Equivalent Class
Partitioning is a black box technique (code is not visible to tester) which can be
applied to all levels of testing like unit, integration, system, etc. In this technique, you
divide the set of test condition into a partition that can be considered the same
(Guru99, 2018).

Figure 26: Test cases in boundary testing

Many errors usually occur at the input or output boundary. Therefore, designing test
cases for various boundary conditions is necessary to detect more errors. A small
boundary test has been done in this project to check some special parameters’
boundary. As shown in Figure 27, the tested input is Target CPU, the valid
Equivalence Class (EC) is from 0 to 100 and Invalid EC has also been shown. Many
test cases have been tested and the result showed that the practical input boundary is
completely correct.

Target CPU: integer

Valid EC:
Target CPU1 = {value | 0 < value < 100}

Invalid EC:
Target CPU2 = {value | value >=100}
Target CPU3 = {value | value <= 0}

Test cases for: -2147483649, -1, 0, 45, 100, 101, 2147483649, one, z, 2.2

Figure 27: Boundary testing example

38

5.2 Usability test

To test the usability of this project, a usability test has been done. Four testers who are
majoring in Information Technology participated this test. They need to finish 3 given
tasks by using UCAML-GUI without any instruction. These tasks are sequentially
creating a UCAML and M2M transformation, load a UCAML, save and use a
template. The result of this test has been shown in Table 3.

Item to test Tester information Task Completed

Yes/No
Comments

Create a UCAML
and M2M
transformation

ZAHNG Xiaoyue

FHL students majoring
in Information

Technology

Yes He was confusing about
the scaling rule and
request due to the missing
of units.

 DAI Wei

FHL students majoring
in Information

Technology

Yes Well done.

 LI Fangtian

FHL students majoring
in Information

Technology

Yes Tester suggest that in
application layer the error
warning for validation
should be placed on the
bottom of form so that it
is more obvious since it’s
closer to submit button.

 HU Bocheng

FHL students majoring
in Information

Technology

Yes Well done.

Load a UCAML ZAHNG Xiaoyue

FHL students majoring
in Information

Technology

Yes The last scale in
application layer is not
cleared in current
loading.

39

 DAI Wei

FHL students majoring
in Information

Technology

Yes The optional parameters
in application layer were
not loaded into form.

 LI Fangtian

FHL students majoring
in Information

Technology

Yes Well done.

 HU Bocheng

FHL students majoring
in Information

Technology

Yes Some labels are missed
after loading.

Save and use a
template

ZAHNG Xiaoyue

FHL students majoring
in Information

Technology

Yes Well done.

 DAI Wei

FHL students majoring
in Information

Technology

Yes Well done.

 LI Fangtian

FHL students majoring
in Information

Technology

Yes Well done.

 HU Bocheng

FHL students majoring
in Information

Technology

Yes Well done.

Table 3: Usability test

As shown in table 3, every tester can finish task “Save and reuse template” without
any obstacle or confusion. But in other tasks, they found some problems and gave a
feedback. After this usability test, some improvements have been done:

40

1. Units and hints are added in the placeholders of “request” and “scale”
parameters.

2. In application layer, the error warning for validation will appear on the bottom
of form.

3. Fixed the bug that form is not completely cleared when loading a UCAML.
4. Fixed the bug that optional parameters are not loaded into form when loading

a UCAML.
5. Fixed the bug that some labels are missing when loading a UCAML.

Even though most testers are not familiar with cloud computing and CNAs, this
usability test is still very helpful to find some bugs and several unusable places.

5.3 Evaluation
In table 4, the evaluations for each requirement are listed. As can be seen, some
requirements are fulfilled well while others are not satisfied. In general, the
UCAML-GUI can complete the basic functions and tasks successfully.

Requirements Result (Not

finished/Moderate/Good)
Evaluation

Create and load UCAML
(see chapter 3.2.1)

Good The users can create their own
UCAML file easily but can
only load the JSON of
UCAML file from local disk
to form.

Avoid repetition
(see chapter 3.2.2)

Moderate The users can save parameters
as a template and select one
template from session to
reuse. They can create but
can’t update a template in the
template list.

Dynamic form
(see chapter 3.2.3)

Good This form meets the
requirement of dynamic form.
The optional parameters can
be added, edited and deleted
in this form whenever
necessary.

Validation (see chapter
3.2.4)

Moderate Most requirements for
validation are fulfilled except
“expose” and “image”.

M2M generation (see
chapter 3.2.5)

Good The UCAML file can be
transformed to platform
specific formats successfully.

41

Extendibility and
reusability (see chapter
3.3.1)

Moderate This project doesn’t strictly
follow the MVC pattern, so it
is not very extendible and
reusable.

Fault tolerance (see
chapter 3.3.2)

Moderate This UCAML-GUI can
tolerate user’s fault in some
aspect like validation. But
some exception handling
mechanisms are still missing.

Responsive design (see
chapter 3.3.3)

Moderate All pages of UCAML-GUI
are responsively designed
except template page and load
UCAML window.

Table 4: Evaluation

6 Conclusion and future work

This thesis has shown firstly the relevant background that refers from general Cloud
Computing to specific Elastic Container platforms and the UCAML which developed
in Cloud TRANSIT project, secondly the complete developing process for the
graphical user interface that describe CNAs for multi-cloud deployments. In general,
it was complex task to create such an inputting system for defining UCAML due to
the data structural complexity and different properties (e.g. some parameters are
mandatory while some are optional). Furthermore, the data must experience multiple
transformation procedures to achieve final M2M transformation: from JSON to html
form, to JSON again and to UCAML, finally finish the M2M transformation.

The UCAML-GUI is implemented as a web-application. Therefore, users have easier
access to it and there are adequate frameworks and libraries to utilize in developing
phase. The MVC design pattern also play a significant role for providing a clear
structure so that the code is easier to maintain and reuse. But if we take much more
time to developing phase, some defects or imperfection can be corrected or improved.
For example, the users cannot update a template in list, the template window and load
UCAML window are not designed responsively and more exception handling
mechanisms are required to tolerate faults caused by users or systems. Furthermore,
the validations for “expose” and “image” are still missing. In addition, we still see the
demand for more strictly following MVC design pattern to enhance the reusability
and extendibility. However, this UCAML-GUI can fulfil most of requirements for
describing multi-deployments for CNAs, including creating UCAML files and

42

loading UCAML json, template system for avoiding repetition, validation and
exporting platform specific configuration files. Since currently the UCAML only
support Docker and K8s, it remains to be seen whether this UCAML-GUI can be
extended to adapt further UCAML after more Cloud platforms are compatible with.

7 Acknowledgments

At the point of finishing this paper, I’d like to express my sincere thanks to all those
who have helped me in the process of my writing this paper. This thesis is based on
the Cloud TRANSIT project and guided by my supervisor Peter-Christian Quint. Mr.
Quint is a very responsible supervisor who provide great help for me, such as
instructions on implementing UCAML-GUI, very thorough feedback for my thesis
and so forth. Furthermore, the regular tutorials on writing thesis which offered by
Lenka Hanesova are also very helpful. Without their help, it would be harder for me
to finish my project and this paper. Thanks to all of you!

8 Bibliography
[1] Kratzke, N. and Quint, P. C. (2017). Understanding cloud-native applications after
10 years of cloud computing -A systematic mapping study. Journal of Systems and
Software, 126(January):1–16.

[2] Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-Native
Applications. IEEE Cloud Computing, 4(5), 16-21. [Online].

[3] https://www.docker.com/what-container, 02/04/2018.

[4] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
50-58. [online]

[5] Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116-116. [online]

[6] Bob Tarzey, (2016). https://www.computaerweekly.com/feature/What-are-cont
ainers-and-microservices, 01/05/2018

[7] Vincent Batts, (2014). https://opensource.com/business/14/7/guide-docker
01/05/2018

[8] Rensin, D. K. (2015). Kubernetes-Scheduling the Future at Cloud Scale.

43

[9] Quint, P. C., & Kratzke, N. (2018). Towards a Lightweight Multi-Cloud DSL for
Elastic and Transferable Cloud-native Applications. arXiv preprint arXiv:1802.03562.

[10] Buzachis Aris, https://blog.buzachis-aris.com/2014/12
/microservices-vs-monolithic-architectures/ 01/06/2018

[11] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg,
omega, and kubernetes. Queue, 14(1), 10.

[12] Chaffer, J., & Swedberg, K. (2010). Jquery reference guide: a comprehensive
exploration of the popular javascript library. Packt Publishing Ltd.

[13] Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web
application development. Procedia Engineering, 69, 1172-1179.

[14] Kratzke, N., Quint, P. C., Palme, D., & Reimers, D. (2017). Project Cloud
TRANSIT-Or to Simplify Cloud-native Application Provisioning for SMEs by
Integrating Already Available Container Technologies. European Project Space on
Smart Systems, Big Data, Future Internet-Towards Serving the Grand Societal
Challenges. SCITEPRESS.

[15] Guru99, https://www.guru99.com/equivalence-partitioning-boundary-va
lue-analysis.html 10/06/2018

9. Appendix A - List of figures
Figure 1: The Google Trends of Docker and K8s (Google Trend, 2018) 4

Figure 2: Service models of Cloud computing (Research Hub) 7

Figure 3: Microservices vs Monolith (Aris, 2014) .. 9

Figure 4: Containers vs VMs (docker.com, 2018) ... 10

Figure 5: The Kubernetes Layout (Rensin, 2015) ... 13

Figure 6: Deploying a CNA with M2M (Quint and Kratzke, 2018) 14

Figure 7: Application description .. 16

Figure 8: Prime-service-app instance... 16

Figure 9: Use case diagram .. 20

44

Figure 10: Data structure (Not complete) .. 22

Figure 11: The MVC pattern in web application (Pop and Altar, 2014) 24

Figure 12: Prototype version 1 ... 26

Figure 13: Prototype version 2 ... 28

Figure 14: Structure of model .. 29

Figure 15: Original navigation bar ... 29

Figure 16: Navigation bar after scroll down .. 30

Figure 17: The structure of form .. 30

Figure 18: Responsive design in small screen ... 31

Figure 19: Match between system and the real world ... 32

Figure 20: Consistency and standards.. 32

Figure 21: Error detection and recover .. 32

Figure 22: Structure of Controller .. 33

Figure 23: Main page ... 34

Figure 24: Usage page (application layer) ... 35

Figure 25: Template window ... 36

Figure 26: Test cases in boundary testing .. 37

Figure 27: Boundary testing example .. 37

10. Appendix B - List of tables
Table 1: Parameter list ... 18

Table 2: Use case specification .. 21

Table 3: Usability test .. 39

Table 4: Evaluation .. 41

