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Task Definition

As part of its computer science teaching and other (research) projects, the myLab at the

TH Lübeck (THL) uses both GitLab and Kubernetes. The intention is to establish a

Kubernetes cluster as a flexible shared hosting platform for research and student projects of

any kind.

However, Kubernetes has the disadvantage of a very steep learning curve. Therefore, this

service has not been widely used by students so far. Due to its limited usability, it is mostly

used “behind the scenes” at the THL.

This bachelor thesis will address this problem and develop a “sca↵olding” solution that gen-

erates preconfigured Kubernetes namespaces and example GitLab projects (Git repositories)

that are built and deployed automatically using GitLab CI pipelines. These projects can

serve as a starting point for further project work and should flatten the Kubernetes and CI

pipeline learning curve.

The sca↵olding solution (in the following referred to as Sca↵older) shall be distributed

and configured via Helm 3 and then deployed as an application in any Kubernetes

cluster.

Users should authenticate to the Sca↵older by using the OAuth 2.0 interface integrated

into GitLab (The OAuth 2.0 interface of the THL GitLab instance should be used as

a reference).

The Sca↵older is to be designed stateless. It should not maintain a state over the

namespaces and related user projects and therefore, cannot enforce limits on the num-

ber of projects per user.

The Sca↵older is intended to create GitLab repositories on behalf of the authenticated

user. These repositories should contain:

– Access credentials to the created namespace in the Kubernetes cluster

– A configured GitLab CI pipeline example (.gitlab-ci.yml) that allows automated

builds and deployments

– Deployment examples (to be selected by users via the Sca↵older interface) covering

typical Kubernetes workloads (Deployment, StatefulSet, CronJob, Job), common

languages (e.g. Java, Python, NodeJS, etc.), and possibly standard stateful ser-

vices (e.g. Redis, MySQL, etc.) in such a way that a user can quickly configure

his source template (e.g. Python + Redis)



– Exposing examples (also selectable by users) should cover Kubernetes Service and

Ingress resources

The Sca↵older should create Kubernetes namespaces, provided that the particular

namespace is still available. The namespaces must be configured as follows:

– Resource quotas for CPU, memory, and storage for namespaces must be specified

(values must be configurable)

– Limit ranges for containers must be specified (values must be configurable)

– The namespace should include a service account

– The service account should be bound to a read/write role that allows the service

account to modify and view only resources within its namespace

A suitable architecture must be developed for the Sca↵older. A setup composed of a single

page web app and a REST-based backend is preferable. The Sca↵older (web app) should be

easy and intuitive to use! Simplicity comes before functionality!
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1 Introduction

For a practice-oriented computer science education, it is not enough for students to develop

and run applications only locally on their computers. That would not meet the demands

of today’s trends, in which an ever-increasing use of public clouds, service-oriented architec-

tures, and standardized, open deployment methods play a role [1].

It is necessary to allow students to deal with current technologies and to enable the use

of them with as little e↵ort as possible during their studies and research. In addition to

integrating these technologies into the curriculum, the first step is to create organization-

wide service o↵erings within a datacenter.

For this purpose, the Technical University of Applied Sciences Lübeck established the myLab

laboratory [2]. The aim is to o↵er teachers, scientists, and students managed services for

any task, be it a research project, courses, theses, or even private projects. The o↵erings

include virtual machines, JupyterLab (for interactive document-based computing), GitLab

(for Git repositories, project management, and continuous integration and deployment), and

Codepad (for quick creation and sharing of code snippets). Compared to public clouds, all

services are free of charge and mentored by teachers and laboratory engineers to lower the

hurdle.

However, a service for e�cient development and hosting of web and cloud-native applications

is still missing. In this context, e�cient means that the service is, at best, well integrated into

the existing GitLab service, does not waste unnecessary resources, and is easy to manage.

Therefore, the o↵ering of virtual machines is not adequate. In contrast, container orches-

trators such as Kubernetes are already used internally as a flexible hosting environment for

applications – but there is no widely used o↵ering for this yet.

Two main reasons are considered responsible for the moderate use of Kubernetes in university

settings:

On the one hand, applications running in containers and the associated container

orchestration introduce new technologies and principles. These are very di↵erent from

the environment in which students usually develop and run their applications. Besides

the actual development of an application, this leads to a considerable additional e↵ort.

1



Furthermore, students have to take new concepts of service orientation into account

when developing applications. The steep learning curve may consequently discourage

many.

And on the other hand, there is no self-service o↵ering for creating Kubernetes envi-

ronments and projects yet. The reason for this is that no available solution meets the

individual requirements of the university setting. Example challenges are the multi-

tenancy capability and the associated restrictions and limits. The service would have

to be well integrated into existing services such as GitLab while introducing as few

new concepts as possible to flatten the learning curve.

1.1 Motivation

The two summarised issues provide the incentive to work on this bachelor thesis and to

develop a solution. Nevertheless, the reasons mentioned can be elaborated further and are

by no means restricted to the university setting. Based on three example organizations, the

following use cases explain how they could benefit from a solution.

The argumentation starts with the most apparent organization – the university. As tech-

nological change accelerates, so do the challenges facing teaching. The curriculum must

adapt more frequently to new requirements of the world of work and research. To be able

to guarantee practical relevance, it is essential to create service o↵erings for students as well

as teachers and researchers. In the example of Cloud-Native Applications, the attention for

this topic has been growing strongly since 2016 (see Fig. 1.1). The rapid growth is due to the

emerging container-based approaches [1] and container orchestrators – including Kubernetes.

Accordingly, it makes sense to familiarise students with these technologies and to promote

their active use during their studies.
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Figure 1.1: Search query trends for “cloud native”, “Docker”, “Kubernetes”, and “microser-
vices” on Google over the last 10 years (10/2010 until 09/2020).
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Another point is that new technologies have a relatively small community at the beginning.

As a result, resources and tools aimed at beginners are not yet available. Furthermore,

the integration into existing tools is often not yet or only insu�ciently given. GitLab’s

Kubernetes integration can be mentioned as an example. The Git repository tool only

allows the creation of Kubernetes clusters in the two public clouds of Google and Amazon

or manual addition of an already created cluster. But advanced knowledge of Kubernetes is

required to use this integration. Also, users must take care of the integration and deployment

of the application themselves1. The simple creation of a project with Kubernetes integration,

which uses existing organizational computing resources, is missing. These points lead to the

fact that students may perceive the learning curve of applications running in containers as

steep. Therefore, a transparent and well-integrated solution for generating projects can make

sense.

A simple and free o↵er to host applications also encourages students to implement their

ideas and projects outside of the courses. That enhances the learning e↵ect even more by

allowing students to pursue their interests and build a portfolio at the same time. The

possible portfolio is especially helpful to graduates when applying for a job because this is

often the only way to show that you have already gained experience [4] [5].

The following two example organizations are agencies and inhouse IT departments. Web

development agencies, on the one hand, develop, manage, and maintain projects for many

clients. Inhouse IT departments, on the other hand, do the same, but for its own applications

and services, and on its own account. In both cases, they can benefit from an automated so-

lution for creating Kubernetes based projects. A self-service o↵er would significantly reduce

the configuration and administration e↵ort. For example, Datadog already successfully uses

an internal tool to provision Kubernetes environments to its developers automatically [6].

Developers could quickly create a project with Kubernetes integration and start development

without administrative or operative overhead.

At the start of a project, the setup of all components usually takes much time. For exam-

ple, the IT administrator must set up and configure the Kubernetes cluster and hand over

the credentials to the developers. The developers then have to initialize the git repository,

including the gitignore file and environment variables. Also, continuous integration and

deployment must be configured and tested with a blank application. When all this got pre-

pared, the actual development can begin. A self-service o↵er that combines these steps and

automatically integrates the artifacts into the repository helps at this critical point.

1GitLab o↵ers the Auto DevOps feature that takes care of the configuration of continuous integration and
deployments for users. However, the process is not transparent to users and thus does not promote learning
and knowledge of the technologies used. Furthermore, Auto DevOps requires a specific configuration of
the cluster and the repository. Since this configuration is based on a cluster-admin role, multi-tenancy
capabilities are limited [3].
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But the generated project could contain even more. Developers could save time by selecting

the desired technology stack in the self-service interface. The service then automatically

generates a sample application for specifically the chosen technology stack. That not only

lowers the learning curve for juniors but also allows automatic adjustment of the continuous

integration and deployment to the specific technology stack.

Furthermore, Kubernetes o↵ers the possibility of namespaces [7]. That means that admin-

istrators can divide clusters among several developer teams. For example, an agency can

create a namespace for each client and an inhouse IT department can create a namespace

for each internal application and service. The centralized management through namespaces

instead of individual clusters allows organizations to monitor and control all resources more

e↵ectively. Additionally, clusters share internal resources between the namespaces, thus

saving costs. Ideally, a self-service solution takes advantage of this namespace feature.

Last but not least, there is the advantage that many technologies related to the cloud-native

stack are open and standardized [8] [9]. Developers can use the same technologies across

various environments. They do not need to distinguish between a private datacenter in a

university or company, and a public cloud. It makes working on this problem particularly

appealing because it addresses a broad target group – which is likely to grow in the future.

This also suggests the Stack Overflow Developer Survey 2020, in which Kubernetes and

Docker as core technologies of the cloud-native stack landed in the top 3 of the most loved

and wanted platforms [10].

1.2 Objectives

This bachelor thesis will address the problems and possibilities mentioned above. The goal

is to develop a self-service interface that allows students to create new GitLab projects with

Kubernetes integration. The generated projects shall be completely preconfigured. That

means that the Git Repository contains a demonstration application, the Docker files, the

Kubernetes manifest files, and the configuration for continuous deployment. The project

should be customizable by the user, who can choose the desired technology stack during the

creation process.

The creation of a simple, standalone project aims at flattening the steep learning curve of

containerized applications. The focus should be on the essential technologies and, if possible,

not introduce redundant convenience tools or concepts.

Furthermore, when generating a project, the service should automatically create a Kubernetes

environment and integrate it into the project. To e↵ectively distribute the available com-

puting capacities, the service should make use of isolated namespaces. The isolation shall be
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solved using a role-based access system that moreover enforces defined resource contingents

for each project.

1.3 Structure of This Thesis

In a first step, this work explains the term cloud-native and its related components in the

Fundamentals of Cloud-Native Applications chapter. That includes containers as a runtime

environment for applications and what container orchestration means. Furthermore, the

concepts of continuous integration and deployment will get explained. These chapters thus

provide the foundation for understanding this work and its results in detail.

Afterward, in the Requirements Analysis chapter, a stakeholder analysis will determine the

requirements for a possible solution. The previous chapter about the fundamentals gives

the possibility to consider technical details in the requirements. Thereby all functional, as

well as non-functional requirements, are collected and documented so that the fulfillment

of the requirements can be evaluated later. Based on the learnings of these chapters, the

system and software architecture will get designed in the Architecture chapter. The software

architecture will consist of the frontend and the backend system.

Once the software architecture is defined, the service will get developed. The Implementa-

tion chapter documents all implementation decisions. Among them are the crucial aspects,

challenges, and limitations of the implemented solution. Lastly, the thesis will assess the

fulfillment of the requirements in the Testing the Requirements Fulfillment chapter.
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2 Fundamentals of Cloud-Native Applications

As previously mentioned in the introduction, many technologies around cloud-native ap-

plications are open and standardized. Consequently, the topic is about how to create and

deploy applications, but not where to run them [11]. That may sound confusing at first

because the word cloud is often associated with known public cloud providers. However,

it instead describes the architectural features and principles for achieving the desired prop-

erties of cloud-native applications [1]. The three properties most frequently mentioned in

cloud-native research are scalability, elasticity, and resilience [1]:

1. Scalability describes the ability of systems to respond to higher or lower loads by

scaling horizontally (Scale Out/In) or vertically (Scale Up/Down) [12] without having

to adapt the architecture of the cloud-native application [13]. Horizontal scaling means

adding or removing an entire node in the distributed system. Vertical scaling means

adjusting one or more specific resources within a node, for example, the CPU, memory,

or storage [12].

2. Elasticity is the continuation of scalability. Herbst et al. define elasticity as “the

degree to which a system is able to adapt to workload changes by provisioning and

de-provisioning resources in an autonomic manner, such that at each point in time

the available resources match the current demand as closely as possible.”[14] The term

elasticity is used extensively in the marketing of public cloud providers [14] since the

combination of elasticity (on-demand availability of computing resources from cloud

providers) and the pay-as-you-go pricing model results in better cost e�ciency [15].

Conversely, this means that you use (and thus pay) only for the resources that you

actually need.

3. Resilience illustrates the ability of an application to recover itself from failure and

continue to function. As Microsoft states it in their .NET documentation: “It’s not

about avoiding failure, but accepting failure and constructing your cloud-native services

to respond to it”[16]. The failures can include unexpected latencies, host and hardware

failures, and temporary faults like blockages caused by long-running processes and

short-term overloaded services [16].

To achieve these properties, developers can apply the following architectural styles and
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principles.

The first step towards cloud-native applications is to align the architecture with a dis-

tributed system. Cloud-native applications are, by definition, distributed [1]. That is

because the traditional monolithic architecture prevents the achievement of the desired

cloud-native properties. The modules of monoliths depend on shared resources, and mod-

ules cannot be executed independently [17]. That leads to significant disadvantages. Every

change within a module requires the restart of the whole application, which can result in

higher downtime [17]. The conflicting requirements of di↵erent modules cause ine�cient

deployment environments, since there may be modules that are computationally intensive

and others that are memory intensive [17]. Furthermore, monoliths limit the scaling of an

application when only single modules are stressed. Replicating the application leads to an

ine�cient allocation of resources to modules that do not have a high load [17]. Architects

and developers must therefore consider and enable a distributed architecture from the very

beginning. Distributed in this context means that the application is split up according to its

individual domains. The resulting components then run distributed on di↵erent machines (or

nodes) and collaborate by communicating via messages passed over the network [18, pp. 2].

In the context of cloud-native applications, the relevant properties of distributed software

applications are scalability, concurrency, and independent failure of the components [18,

pp. 3–6, 15].

There are many examples of architectural styles that implement the concept of distributed

systems [18, pp. 56f.], but cloud-native applications in particular can be attributed to a

specific architectural style that fulfills the characteristics of a distributed system. In 2017,

Kratzke et al. found that the terms “cloud-native” and “native cloud” “show increasing mo-

mentum and are emerging from an evolutionary process starting with the service-oriented

architecture approach, system virtualization, cloud computing, operating system virtualiza-

tion (aka container) and ending in a recently most popular approach: microservices.”[1]

Compared to the service-oriented architecture, the more modern and “pragmatic” [1] mi-

croservices approach is not only the most popular [19] but also the approach most aligned

with cloud-native principles [20]. The microservices architecture decomposes the application

into minimal [17], loosely coupled, and independently executable [11] and deployable [21]

services that get deployed fully automated [21]. Services are designed with scalability and

constant failure in mind and hence should be stateless or as stateless as possible [22] [1].

A shared-nothing architecture in which each node can answer requests independently and

autonomously with its own available resources is particularly suitable for this purpose [23].

The state is then handled by backing services (usually a database), which are replicated on

each node [23]. The term “minimal” in the definition refers to the functional scope, which is

only supposed to cover the underlying concerns [17]. A concern is organized around business
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capabilities and not on the technology layer so that you can have more independent and

cross-functional teams [21]. That leads to the fact that di↵erent services can be heteroge-

neous and polyglot [17]. Therefore, particular standards have emerged to be able to leverage

this heterogeneity: [1]

Ensuring loose coupling of microservices so that services communicate with each

other in a well-defined way without having to know how the requested functionality

is implemented. As long as the interface of a service does not change, developers can

change the implementation of one service without a↵ecting the functionality of other

services [24]. That facilitates the separation of concerns and the independence of in-

dividual microservices. Therefore, it allows services to be developed, tested, deployed,

monitored, and consumed independently of each other [25]. Two approaches imple-

menting loose coupling are the event coupling (via message exchange) and the data

coupling (a common isolated state using a database) [1].

Use of simple and scalable communication protocols to connect the heteroge-

neous services. The most widely used architectural style in the context of microser-

vices is Representational state transfer (REST) [1] [19], which in turn is based on

the stateless Hypertext Transfer Protocol (HTTP) and that “imposes several [archi-

tectural] constraints” to “provide uniform interface semantics” [26]. Both approaches

have proven themselves over many years in distributed web services, namely the World

Wide Web. Microservices employ HTTP “in a very pragmatic way to build distributed,

large scale, massively (horizontal) scalable and elastic cloud[-native applications]” [1].

Services that are implementing the REST style are called RESTful services [24]. The

services are asynchronously exchanging JSON-serialized [1], self-describing messages

without needing to know or remember the state of the conversation [24].

Encapsulating services and all its dependencies into standardized self-contained

deployment units [1] so that services always behave the same and can be migrated

e�ciently and with less risk [22]. The use of containers is the logical consequence for

this problem because they are much lighter, more e�cient, and easier to manage com-

pared to virtual machines [22] [27]. Container virtualization o↵ers namespace isolation

to give processes an isolated view of the system (e.g. file system and networking) and

the ability to limit resource usage via Linux control groups [28]. The most popular

container runtime [19] and now considered the de facto standard runtime is Docker’s

containerd runtime [1]. The runtime is highly standardized by the OCI runtime [29]

and image [30] specification and got adopted by many cloud providers and open source

projects – including Kubernetes [31]. That results in high portability and robustness

within all compliant runtimes and adopters. We will take a practical look at Docker

and its architecture in chapter 2.1.
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That demonstrates that the distributed microservices architecture style is suitable as a

basis for cloud-native applications. However, breaking down an application into minimal

container-based microservices does not solve the problem of managing them, namely the

automatic scaling and the resulting elasticity. It requires further principles that make it

possible to achieve cloud-native properties.

Containers must be actively managed to guarantee the best possible resource utilization.

For this purpose, elastic platforms are used which abstract the underlying infrastructure

and on which resources can be requested via a uniform interface [32]. The common term

for an elastic platform is a container orchestrator [22]. The managed system, consisting of

physical nodes and the containers or applications, is called a cluster [33]. The fundamental

functions of container orchestration platforms are: [33]

Establishing the desired cluster state (e.g. automatic scheduling and scaling of

the containers; resource allocation)

Providing high availability and reliability (e.g. redundancy of components on

di↵erent nodes; load balancing; health management consisting of fault detection and

self-healing)

Ensuring security (e.g. container image integrity verification; access management

like attribute- and role-based access control; secret management)

Simplifying networking (e.g. network isolation; dynamic port allocation and routing

through the abstraction of a service [34])

Service discovery (e.g. a service registry holding the network addresses)

Providing monitoring and governance (e.g. resource usage metrics at the layer of

containers, services, applications and nodes; auto-scaling; separation of the container’s

lifecycle and its logs)

Enabling continuous deployment without disruption (e.g. allowing various de-

ployment strategies like incremental, blue/green and canary deployment [35]; rollback

solutions, declarative management of the desired cluster components and state)

The last point, that all cluster components are described declaratively, has the significant ad-

vantage that the complete system state can be versioned and described in a single repository.

This principle is called GitOps (Git operations) [36]. As the name suggests, for instance, a

pull or merge request within the Git repository initiates operational changes of the cluster.

That means that the cluster adapts any change in the code (both of the infrastructure and

the application). The automated continuous integration and deployment (CI/CD) pipeline

is responsible for this adaptation by updating the desired system state. In addition, ver-
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sioning of the cluster components also facilitates the restoration of previous system states

and allows code reviews for infrastructure-related changes. Since the GitOps principle relies

particularly on the CI/CD, we will explain how it works in detail using GitLab’s solution as

an example in chapter 2.3.

In production environments, Kubernetes currently leads as the most used container orches-

trator [19]. It implements all fundamental functions mentioned above. Therefore, in chapter

2.2 we will present these concepts and features of container orchestrators using practical

examples based on Kubernetes.

In summary, the necessary principles to achieve the cloud-native properties consist of a [22]

1. microservices-oriented architecture that decomposes applications into minimal,

loosely coupled services that are massively scalable through simple communication and

as much statelessness as possible.

2. The services are packaged in containers together with all dependencies, resulting in

optimal reproducibility, portability, and isolation.

3. A container orchestrator again schedules, monitors, and scales all these containers

to achieve optimal resource utilization, which is illustrated by the elasticity property of

cloud-native applications. The cluster components are described declaratively to enable

4. continuous integration and deployment, which allows the automation of opera-

tional changes and having a single source of truth.

2.1 Containers with Docker

As already stated, Docker is the de facto standard tool when working with containers. You

can “build, run, and share” [28] containerized applications with it. A comparison between

virtual machines and containers helps to explain the components of Docker.

The main di↵erence is that virtual machines (VMs) isolate di↵erent systems, whereas con-

tainers isolate separate applications or services (see Fig 2.1). Each isolated system requires

a complete image of an operating system (the guest OS), which is managed by a hypervisor

and runs on a host system. The hypervisor must virtualize and split the physical resources

between each guest system. This virtualization of resources is not found in containerization

because containers run directly as a process on the host system. In Linux, these processes

are isolated via namespaces, and their resource usage is restricted by control groups. The

Docker daemon is a RESTful service. It is responsible for the management of all Docker
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Figure 2.1: Comparison between system (left) and application (right) virtualization.

objects. These can be containers, but also images, isolated networks, and data volumes (see

Fig 2.1). All these objects can be controlled by the Docker CLI, which sends the appropriate

HTTP requests to the Docker daemon, or directly through the REST API of the Docker

daemon. In this introduction we will use the Docker CLI commands.

Before you can start and run a container, you have to build it. For this purpose, Docker

provides the image component. The Docker documentation says that “an image is a read-

only template with instructions for creating a Docker container” [28]. Usually, you use other

images as a basis and then extend it with your customizations, for example installing the

application’s dependencies and copying the source code into the image. On the other hand,

a container is a running or runnable instance of an image. The distinction is because a

container can have multiple states. For example, you can create a container but not start

it yet (created). Then you can start the container (running) and also pause every process

inside of the container (paused). If you stop the container (exited), it not loses its state. As

long as the container has not been removed, you can start it again (restarting).

We will now build a simple, minimal Hello World! HTTP service with the JavaScript

runtime Node.js [37] and the web framework express [38]. We take the application code,

shown in Listing 2.1, as given. Just with this little application, you can already illustrate

three essential concepts of Docker. The first is to expose the application on port 80, so it is

reachable from outside of the container. The second concept covers environment variables.

The application reads the environment variable GREET_NAME in line 5 and sets the constant

greetName accordingly. The application also has an endpoint to retrieve the data of the

log file that gets updated with every request made to the Hello World! endpoint. As long as

the container does not get removed, it will maintain its state. But to be able to see the logs

even after the removal and recreation of a container, we will store the log file persistently

on the host machine. That is solved by the third concept using a data volume mounted into
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the container. Volumes can only be deleted explicitly and are, by default, detached from the

lifecycle of a container.

1 const express = require( express )

2 const fs = require( fs )

3 const app = express()

4 const port = 80

5 const greetName = process.env.GREET_NAME || World

6

7 app.get( / , (req, res) => { // Hello World! endpoint

8 const logEntry = {Date.now()}: { {req.ip}: {greetName}}\n

9 fs.appendFile( log.txt , logEntry, function (err) {

10 if (err) throw err

11 console.log( Saved log: {logEntry} )

12 })

13 res.send( Hello {greetName}! )

14 })

15

16 app.get( /log , (req, res) => { // log endpoint

17 fs.readFile( log.txt , function (err, data) {

18 if (err) throw err;

19 res.send(data.toString())

20 })

21 })

22

23 app.listen(port, () => { console.log( App listening on port: {port} ) })

Listing 2.1: Hello world service in JavaScript with express. (app.js)

Listing 2.2 shows the Dockerfile with all steps to build a docker image for the Hello World

service. Each line in a Dockerfile starts with a keyword which stands for the respective

building operation. The file shown here demonstrates the most essential and for this work

relevant operations.

The first step is to select a base image from which to build the custom image. In this

case, a JavaScript program needs to be executed. So Node.js is a suitable runtime. The

o�cial node image1 has all the necessary tools to run JavaScript programs – including the

Node Package Manager ( npm ). Similar images for any other programming language are

1https://hub.docker.com/_/node (visited on 10/09/2020)
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available in the Docker Hub2. The FROM operation selects the base image in the form of

<repository>:<version> .

1 FROM node:12

2 EXPOSE 80

3 ENV GREET_NAME=World

4 WORKDIR /hello-world-service

5 RUN mkdir data

6 # VOLUME ["/hello-world-service/data"]

7 COPY package.json . # Dot (.) indicates the present working directory

8 RUN npm install

9 COPY app.js .

10 ENTRYPOINT ["node", "app.js"]

Listing 2.2: Dockerfile for building the hello world service image. (Dockerfile)

Since the Hello World service has an HTTP interface, the container has to be configured

to be accessible from outside of it. The EXPOSE operation is a best-practice for the doc-

umentation of service ports but has no actual functionality. It should show users of the

image the intended port which needs to be exposed. The actual publishing of the ser-

vice on the host machine happens when the container is started. This is done with the

--publish <port-host>:<port-container> flag.

When starting the Hello World service, the application initializes its constants. The service

reads the GREET_NAME environment variable and sets the greetName constant accordingly.

So that the constant is never empty, the ENV operation sets a default environment variable

for GREET_NAME . This environment variable is set for each operation in the build process

of the image and during the runtime of the container. Every defined environment variable

can later be changed, for example when starting a container or at runtime by interacting

with the Docker daemon. Furthermore, additional environment variables can be created and

modified that are not included in the Dockerfile. For this reason, the environment variables

defined in the Dockerfile are normally used as a default setting for the application running

inside of the container.

Next, the WORKDIR operation is used to specify the working directory in which any fu-

ture operation should be performed. This improves the readability of commands and the

maintainability of the Dockerfile. If the specified path does not exist, it gets automatically

created using mkdir commands. So the WORKDIR operation can be seen as a combination

of mkdir and cd . As with the change directory ( cd ) command in Linux, a distinction is

2https://hub.docker.com/ (visited on 10/09/2020)
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made between absolute and relative paths. If the string starts with a slash ( / ), it indicates

an absolute path starting from the root path. Without a slash, it points to a relative path

starting from the present working directory.

The RUN operation can now execute a command in the desired working directory. Since

the service stores the logs under the path data/log.txt , this path has to be created first.

In line 5, the mkdir command creates the data directory for storing the logs. This is

the path a volume can be mounted at for persistence. Docker o↵ers several ways to create

volumes. As indicated in the comment in line 6, a volume can be created automatically for

each container and mounted at the data path inside of the container. However, this has

the disadvantages that the volume is empty for each new container, it is assigned a random

name, and it can not physically be provisioned by a container orchestrator. The two other,

and in this case more reasonable solutions, are manually created volumes, which get a desired

name and are managed by Docker, and bind mounts, which mount a path from the host

system into the container. The former can be used by creating a volume with the Docker

CLI command docker volume create hello-world-data and mounting it inside of the

container using the flag --volume hello-world-data:/hello-world-service/data . In

the latter case, the flag --volume <your-host-directory>:/hello-world-service/data

is used to mount a path from the host system into the container. However, the path from the

host system must be absolute to avoid possible ambiguity between volume names and paths

(since the --volume flag is the same for bind mounts and volumes). Example use cases are

volumes to share data between di↵erent containers, to persist data, and to load configuration

files from the host system into the container. It should be noted, that even the first solution

with a Dockerfile-defined and randomly generated volume can be reasonable too. That is

because application data should preferably not be written and read in the container itself.

The I/O performance is much lower compared to native programs or volumes because you

work in the so-called writeable layer of the container [39].

The next step is to install the dependencies of the service. As mentioned above, the service

is based on the web framework express which must be installed first. The COPY operation

copies the package.json file (a simple, npm -specific file listing all dependencies) from the

host system into the image. The path of the file to be copied is relative and originates from

the path of the Dockerfile. That means that the package.json file must be located in the

same path as the Dockerfile from which the image is built. Afterward, the RUN operation in

line 8 executes the command npm install 3. Once all required packages are installed, the

COPY operation copies the source code of the service from the host system into the container.

3In production environments you should use the npm ci command and copy the package-lock.json file

into the image too. The command is faster, stricter and reduces inconsistencies by using only the versions
specified in the package-lock.json file. See here for more info: https://docs.npmjs.com/cli/ci.html

(visited on 10/10/2020)
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The reason why this happens only after the dependencies have been installed and not the

complete folder is copied in line 7 is because images are based on a layer system. Each RUN ,

COPY and ADD operation in the Dockerfile adds a new layer to the image. That allows the

individual layers to be cached and the build time of an image can be significantly reduced.

In practice, this means that if the layer from line 7 (i.e. the dependencies of the service) does

not change, then this layer and the following one do not need to be rebuilt. Correspondingly,

the dependencies do not have to be reinstalled in the image after every change to the source

code. One best-practices is to copy frequently changing files (in terms of continuous software

development) into the image only late because the cache gets invalidated for all subsequent

operations [40].

The last step is to give the image a default command. Either the ENTRYPOINT or CMD

operation is possible for this purpose. This example uses the ENTRYPOINT operation in

line 10 which makes the image executable. The defined default command, as long as it is

not overwritten manually at startup, is automatically executed at every startup and thus

represents process number 1. This process also receives the termination signal accordingly.

Both the ENTRYPOINT and CMD operations use the so-called exec form with the JSON

syntax ENTRYPOINT ["executable", "param", "param"] . The first entry in the array is

always an executable and the following entries are the parameters. The di↵erence between

ENTRYPOINT and CMD is that you can optionally define both operations in the Dockerfile

at the same time while using the CMD operation as a means for default parameters. For

example, an executable file and parameters can be enforced during startup of a container

using the ENTRYPOINT operation and further overwritable default values can be passed in

the form CMD ["param", "param"] using the CMD operation.

The Dockerfile is now complete. The docker build -t hello-world:0.0.1 . command

builds and tags the image for the Hello World service. An image tag can be thought of

as a counterpart to a Git tag and is used to reference an image version. In this case, the

repository name is “hello-world-service” and the version is “0.0.1”. The dot (.) in the build

command indicates the directory for the build context, where it will look for the Dockerfile,

and from where it will copy the files when building the image.

To create and execute a container of the Hello World service, the persistent volume for

the data directory needs to be created first with the docker volume create hw com-

mand. It creates a volume with the name “hw”, which can be mounted in the next

step when starting the container. The docker run -e GREET_NAME="Tom" -p 80:80

-v hw:/hello-world-service/data hello-world:0.0.1 command finally creates and

starts the container, and also overwrites the default GREET_NAME environment variable.

The remaining question is how to store and distribute the image – both to other developers
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and onto servers. For this purpose, there are container image registries. They use the tags

to reference container images. Accordingly, an image must always be tagged before you can

push it into a registry. The tag has the form <host:port/repository:version> . Here,

“host” always represents the hostname, the fully qualified domain name, or the IP address

where the registry can be reached. To push and pull images, developers can simply execute

the docker push <tag> and docker pull <tag> commands with the tag in the form

defined above.

2.2 Container Orchestration with Kubernetes

The manual pulling of a container image and its start with multiple flags is time-consuming

and does not scale for many containers, applications, and servers. Chapter 2 has al-

ready listed the functions that Container Orchestrators provide. This chapter now explains

Kubernetes’ concepts and extends the Hello World example from the previous chapter using

Kubernetes workloads.

2.2.1 Architecture

Kubernetes consists of a Master/Worker architecture (see Fig. 2.2) [41]. Each (physical or

virtual) machine is called a node, and all nodes together form a cluster. The master node

consists of the control plane (blue colored, see Fig. 2.2), which is the container orchestra-

tion layer. That control plane manages the lifecycle of all containers. The controllers are

responsible for responding to node failures, ensuring that the correct number of replicated

pods is always running, connecting containers with services via endpoints, and automatically

creating default accounts for new namespaces. The scheduler then selects a node to run pods

that have not yet been assigned to a node using various criteria. Furthermore, the key-value

database etcd stores the services, configurations, and secrets. All these internal components

of the control plane are accessed via the API server. That applies to both kubectl (the

command line interface) and the worker node components.

On the other hand, the worker nodes run the containerized applications. Each worker

node consists of the kubelet, which is an agent responsible for the management and health

of local running containers, and the kube-proxy, which maintains the iptables entries for

endpoints and services. Also, to be able to run containers, each node provides a container

runtime.

Kubernetes objects (also often called manifests [42]) describe the state of resources in the

cluster in declarative form. For example, each object can represent a containerized appli-

cation, available system resources, or rules on how an applications can and must behave.
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Figure 2.2: Example Kubernetes cluster and its components [41].

All objects together form the desired cluster state. Kubernetes constantly tries to establish

and maintain this desired state. Internally it keeps track of two states for each object. It

holds the spec field, which expresses the desired state of an object, and the status field,

which allows monitoring the current state of an object. The control plane is responsible

for continuously comparing these two object fields and adjusting the state of an object, if

necessary so that the two fields match. The objects are usually described using YAML (an

acronym for “YAML Ain’t Markup Language” [43]), a human-readable data serialization

language. YAML is a superset of JSON. The Kubernetes client (kubectl) converts YAML-

defined objects to JSON strings before making requests to the Kubernetes API. Each object

to be created consists of a field for the API version to be used ( apiVersion ), the type of

object ( kind ), the metadata for identifying objects ( metadata ), and the desired state of

the object ( spec ). The latter di↵ers in its structure depending on the API version and

type of the object [44].

2.2.2 Namespaces

However, the complex architecture of Kubernetes has the disadvantage that it involves a

relatively large amount of overhead, both from an operational and financial point of view.

Therefore, Kubernetes usually makes more sense for large to very large applications. In order

that teams with smaller applications can also benefit from the advantages of Kubernetes,

a multi-tenant solution can make sense. Using a cluster with multiple teams leads to more

e�cient use of resources and takes advantage of economies of scale from which otherwise

only large corporations can benefit. The challenges are the isolation between teams or

applications and the fair distribution of resources among applications. To overcome these

challenges, Kubernetes o↵ers namespaces. These are “virtual clusters backed by the same

physical cluster” [7] but still share the resources of all nodes between all namespaces. That

means that a set of nodes does not dedicate itself to a single namespace. They can thus

isolate environments between multiple teams and projects. An important point, also for

the solution to be developed, is that namespaces cannot be used to represent hierarchical
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structures, since namespaces cannot be nested into one another.

Namespaces enable further principles for optimized isolation and fair sharing of resources.

Each namespace provides a service account by default, which clients can use to authen-

ticate themselves towards the API server. These service accounts allow assigning rights

to clients. For example, you can authorize a client via a service account to read cer-

tain resources but forbid it to modify them. The two relevant authorization alternatives

of Kubernetes are attribute-based access control (ABAC) and role-based access control

(RBAC) [45]. With ABAC, you can create a policy that directly associates a service ac-

count with a rule allowing certain operations for a specified resource. RBAC, on the other

hand, requires the creation of a role beforehand. In contrast to ABAC, this role can contain

many rules that allow certain operations for specified resources and is either cluster-bound

(ClusterRole with rules applying for all resources in the cluster) or namespace-bound (Role).

The RoleBinding resource then associates the role with a service account.

Further, limits and quotas, applicable to namespaces, solve the challenge of fair sharing of

resources. Resource quotas can divide the physical resources available in a cluster among

the namespaces. Thus, they restrict resource usage within individual namespaces. But it

does not necessarily have to include only physical resources such as the number of requested

CPUs, memory, and storage. The restrictions can also include the number of Kubernetes-

specific objects [46]. The latter can be helpful because the cluster and nodes have a definite

capacity of resource objects they can manage [47]. Unlike namespaces without resource

quota, developers who want to create Kubernetes objects in a restricted namespace must

always specify how many resources each object requires. That is the only way the controller

can decide whether it can create the object in the namespace, or it has to reject it due to

excessive resource requirements [46]. To prevent creation failures due to undefined resource

requirements, Kubernetes o↵ers default values for containers, pods, and volumes via the

LimitRange object [48]. As the name suggests, it additionally enforces minimum and max-

imum limits for every object’s resource request. That has another advantage that not one

container can claim all resources for itself.

2.2.3 Workloads

The term pod has already been mentioned multiple times, but a definition is still missing.

The Kubernetes documentation says that “Pods are the smallest deployable units of com-

puting that you can create and manage in Kubernetes. A Pod [..] is a group of one or more

containers, with shared storage/network resources, and a specification for how to run the

containers. A Pod’s contents are always co-located and co-scheduled, and run in a shared

context” [49]. In terms of Docker, this shared context means that the containers run in the

same Linux namespace and control groups with a shared filesystem. The containers inside of
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a pod are therefore tightly coupled. In a non-cloud context, this concept is the counterpart

to applications running on the same physical or virtual machine.

A single container per pod is the most common scenario. However, there are also other use

cases where the actual application requires additional containers. For example, there are

so-called init containers, which can get executed with di↵erent images than the application

itself. They prepare the environment like volumes by running utility programs. Before the

application container can start, the init containers must run to completion and thus “o↵er a

mechanism to block or delay app container startup until a set of preconditions are met” [50].

Another example could be sidecar containers that run alongside the application container

and constantly update the contents of the shared volume. Imagine a web server that serves

static files that get updated by a file puller sidecar container.

Typically you do not work with pods directly. There are higher-level workload objects

that automatically create and manage pods. These workload objects are always based on

pods and thus require pod templates that are part of the desired state of a workload. The

workload controllers then take control and monitor the pods created on behalf of workloads.

The following list describes the most common and for this thesis relevant workloads:

Deployment: The Deployment workload provides controlled handling of updates,

scaling, and rollback functionality. It is based on the ReplicaSet workload, which is a

lower-level workload that “ensures that a specified number of pod replicas are running

at any given time” [51]. Deployments are an ideal workload for stateless applications

as they do not maintain a state for the administered pods. The pods thus are treated

as disposable and independent units [52].

StatefulSet: The StatefulSet workload provides the same functionality as the De-

ployment workload, but additionally “maintains a sticky identity for each of [its]

Pods” [53]. That means that a pod will retain a unique network identifier and its

persistent storage across rescheduling. Also, it guarantees an ordered deployment and

scaling through ordinal indexes. That means, for example, when you deploy a set of

two pods, the StatefulSet controller will always start deploying the first pod (and its

storage) with an ordinal of 0. It waits until the pod is running and only then starts the

next one with an ordinal of 1. When scaling down the set, the controller performs the

deployment in the opposite direction. It always removes the pod with the highest ordi-

nal first. When scaling the set up again, each pod will resume in its previous state by

keeping the same storage. This workload is especially helpful for stateful applications

like databases.

Job: The Job workload covers short-lived tasks, which, unlike long-lived services,

terminate after a definite time. The workload is typically useful for asynchronous tasks
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that are CPU-bound and which the main application should not run itself. Running

a job thus can prevent blocking the event loop of the actual application and allow

much more diverse tasks to be executed. Like any other controller, the job workload

controller creates pods but also ensures that a specified number of them terminates

successfully. This number is dependent on the type of the job. Kubernetes o↵ers three

main types of jobs. The first type is a single pod that needs to terminate successfully

once. If that pod fails it will restart it until it terminates successfully4 or until the

backo↵ limit is reached. In the latter case, the job fails. The second type is a job that

runs a pod for a specified number of completions sequentially. The last type is a job

that runs a specified number of pods in parallel and succeeds if all pods terminate of

which at least one pod successfully terminates. In case not all pods can get created

directly, which might be the case in restricted namespaces, the controller will not create

additional pods if at least one pod has been successfully terminated.

CronJob: Just like the time-based scheduler in Linux, namely cron, the CronJob

workload runs tasks on a repeating schedule. This schedule is written in the cron

table format. The CronJob controller does nothing else than creating Job workloads

periodically. This can be helpful for creating backups and other maintenance tasks.

2.2.4 Services

Containerized applications can run distributed and replicated in multiple pods and on mul-

tiple nodes using the Deployment workflow. However, the resulting endpoints of all pods

must also be discoverable to be able to send requests to them. The challenge is that pods

are disposable and each of them gets a new IP address when it gets started. To solve this

problem Kubernetes o↵ers the Service object. It abstracts a set of pods to a logical unit that

can be accessed by clients. That is possible because pods are designed to be interchangeable

so clients can send their request to any pod. The service object provides a stable DNS record

and automatically balances the load between all pods. The service controller knows to which

endpoints it must forward the requests using selectors. These selectors must be defined in

each pod template and must match the selector from the service (see Fig. 2.3, the app

keyword represents a selector) [54].

The Service object can now be used to send requests to replicated applications. But this

works only within the cluster because the service has a type of ClusterIP . That means

that the service exposes itself to a cluster-internal IP address. Two common ways to be able

to access services from outside of the cluster are making use of node ports or Ingress objects.

When setting the Service’s type to NodePort , the service controller allocates a port on

4Provided that the restart policy is set to OnFailure .
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each node in the cluster. Service requests can now be made to every node on the allocated

port. Each node then proxies the request to the corresponding service. Since this method

creates new entry points for each service in a particular port range (the default range is from

30000 to 32767), it usually makes it necessary to proxy these entry points again to be able to

reach them under a unified address. For this purpose, Kubernetes o↵ers the Ingress object

that exposes all services at the same address and consolidates all routing rules in a single

resource [54].

All Ingress objects rely on an Ingress controller that must be manually deployed in the

cluster first. That can be a proxy server like Nginx, which is also the o�cially supported one

by the Kubernetes team. Unlike a service, the Ingress object provides additional features

such as TLS termination, name-based virtual hosting (see Fig. 2.3), and HTTP URI-based

routing [55].
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Figure 2.3: Example Ingress application resolving to two virtual hosts [55].

2.2.5 Hello World Service Example

Finally, we will combine the above Kubernetes concepts with the help of the Hello World

example. The example covers the three concepts (environment variables, volume, and publi-

cation of the service) we already know from the Containers with Docker chapter. Accordingly,

the Hello World service should be accessible under a hostname from outside the cluster on

port 80. The communication between client and cluster should be encrypted using TLS.

The Ingress object (see Listing 7.1, Line 48) serves this purpose. In total, one instance of

the Hello World service shall run in the cluster, which stores its logs in a volume. That is

solved by a StatefulSet, which contains a template for a volume (see Listing 7.1, Line 37).

The volume gets created together with the pod and it always gets mounted by the same

pod – even after rescheduling and scaling. That is due to the sticky identity provided by the

StatefulSet. In addition, the underlying ReplicaSet ensures that the container in the pod gets

restarted if it fails. In this example, we want to set the environment variable GREET_NAME

to “Gandalf the Grey”. The container specification solves this through the env keyword
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(see Listing 7.1, Line 31). The connecting piece between the Ingress object and the pods is

the Service object. The service adds each pod with the selector app: hello-world-pod

(see Listing 7.1, Line 10) to its endpoints list and balances the load between them. In this

case, it is only one pod, but the replica number can be upscaled.

To deploy the app in the cluster, we can simply run the kubectl apply -f hello-

world.yaml command. The Kubernetes controller will create all resources according to

the specification. If you now want to update the Hello World service, you can change the

hello-world.yaml file and run the apply command again. For example, we can update

the service with another name to greet. When changing the GREET_NAME environment vari-

able to “Gandalf the White” and, again, running the apply command, Kubernetes will

stop and remove the outdated pod and then recreate it with an updated one. The appli-

cation will still retain its logs in the volume. But the disadvantage of having volumes for

the logs is that it does not scale. Scaling the service would mean creating multiple di↵erent

volumes for each pod. To solve this issue, it is a good practice to outsource the logging into

a dedicated service, which records the logs of every pod in the cluster. That demonstrates

the cloud-native principle that your services should always be as stateless as possible to be

scalable and resilient.

2.3 Continuous Integration and Deployment with GitLab

CI/CD is all about automating development practices and minimizing the risk of bugs and

conflicts. CI stands without doubt for continuous integration, but the acronym CD can be

interpreted in two ways. One is continuous delivery, and the other is continuous deploy-

ment [56]. Why this thesis chooses the variant of continuous deployment, will be explained

in a moment.

Continuous integration sets the goal of merging new code from development branches to

the main branch as often as possible. By having developers writing tests, these tests can

get executed automatically each time developers push new code to the repository. That

is what the commonly called CI pipeline is responsible for. After building the application

and running the tests, it then validates whether the tests were successful or if the new code

causes errors. Only if the pipeline has passed successfully, the new code can be merged

into the main branch. Also, developers must first merge any update that takes place on

the main branch, before they can merge their development branch into the main branch –

regardless of the success of the pipeline. Doing the integration as often as possible reduces

discrepancies between development branches and their di↵erent dependencies. The mantra

is that the whole process of building and testing should be automated and without human

influence [56].
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Continuous delivery or deployment now extends the principles by a further stage. The

pipeline just mentioned is usually divided into di↵erent stages. Continuous integration intro-

duced the first two stages, namely the testing and building stages. The pipeline’s principle is

that it only executes the next stage if it successfully completed the previous stage. Accord-

ingly, a third stage can be introduced, which automatically deploys the code to the servers.

The di↵erence between continuous delivery and deployment is that the former requires hu-

man intervention, which is the manual execution of the deployment stage [56]. Continuous

deployment, on the other hand, deploys code from the main branch to the servers automat-

ically. Thus the main branch always represents a single source of truth. That is especially

advantageous when working with Kubernetes since it is possible to describe the entire system

declaratively with just the manifests. The CI/CD pipeline can thus automatically change the

system state without operational e↵ort. As described earlier, this principle is called GitOps.

By having the infrastructure as code, developers can now conduct code reviews, write com-

ments, and use git diff for operational changes. In addition, the infrastructure’s version

control also makes it easy to roll back to previous system states [36].

To use GitLab’s CI/CD integration, all you need to do is add a gitlab-ci.yml file to the

repository, listing the di↵erent stages and their procedures. The principles outlined here

are not limited to GitLab, but also apply to other Git hosting providers, and di↵er only in

implementation details. Listing 2.3 describes a single stage, namely the testing stage of a

Node.js application. Each stage consists of one or more jobs, and each job, in turn, consists of

a script that uses standard bash commands (Bourne shell) [57]. You can specify many more

conditions and properties for a job, like caching behavior, parallelism, and when stages should

be executed automatically. Every time a developer performs a Git push, it automatically

initiates the pipeline to start. Each job then gets executed in a dedicated container. The

containers download the repository and checkout on the corresponding branch from where

the push was executed. Afterward, each container executes its job’s script. If the exit code

of a job is non-zero, it means that the pipeline has failed and all subsequent stages will not

get executed [58].

1 Test app: # one job in the testing stage

2 stage: testing

3 image:

4 name: node:12

5 script:

6 - npm ci # install the dependencies

7 - npm run test # run the tests

Listing 2.3: Minimal GitLab CI example pipeline for the testing stage. (gitlab-ci.yaml)
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3 Requirements Analysis

This chapter will gather the requirements for the solution to be developed through a stake-

holder analysis. The advantage of a stakeholder analysis is that the requirements do not

necessarily have to focus on the university environment, but will also consider other en-

vironments and groups. Since the bachelor thesis has a fixed deadline, it makes sense to

prioritize the requirements and focus on the most important ones. For the prioritization,

the MoSCoW method will be applied. That means that there will be four priority classes,

namely Must-Have, Should-Have, Could-Have, and Won’t-Have. The Won’t-Have category

only applies to the completion time of the bachelor thesis and does not categorically exclude

a requirement forever. Therefore, requirements can also leave room for future enhancement

opportunities.

3.1 Stakeholder Analysis

First, the requirements defined by the bachelor thesis itself (see Task Definition) get recorded

for each stakeholder. Since these requirements are decisive for the success of this bachelor

thesis, they are given the highest priority. Afterward, possible further requirements get an-

alyzed and recorded. The associations of individual requirements with the respective stake-

holders are merely assumptions. That helps to put oneself in the position of a stakeholder

group, to identify requirements more e�ciently, and to easier understand the reasons behind

requirements. The appendix finally lists all functional (see Table 9) and non-functional (see

Table 10) requirements in tabular form. The tables contain the atomic requirements and are

thus higher in number and level of detail than the following stakeholder analysis.

3.1.1 End Users

The end-user group describes all the people who are supposed to use the solution. These

are, for example, students, researchers, and software developers.

As a user, you want to authenticate yourself quickly and easily. Ideally, you don’t want to

register just for this one solution. Therefore it makes sense to use a single sign-on solution

where the users are already registered. For this purpose, there is the requirement that users
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can log in through GitLab’s OAuth 2 interface (see Req. F1). That also gives you the ability

to o↵er the solution only to people who are authorized to do so. In the case of this bachelor

thesis, those people are who already have a GitLab account at the university.

If you, as a software developer, decided to host a new project in a Kubernetes cluster, you

would have to do several steps manually. That includes creating a new git project and

asking a server administrator to create a cluster or namespace. You would also need to set

up the project for the cluster environment. These steps result in the requirements for a

self-service solution. Users should be able to create both a GitLab project (see Req. F2) and

a namespace in the cluster (see Req. F3) on their own. While configuring the project in the

self-service user-interface, a user should be able to select the desired technology stack (see

Req. F2.5–F2.9), and the solution then initializes the project with a corresponding template

application (see Req. F2.10). This template application should additionally be ready to

run directly after the project is created (see Req. NF8). That involves setting up a CI/CD

pipeline (see Req. F2.2) with appropriate Dockerfiles, Kubernetes manifests (see Req. F2.8)

and additional files to prevent secrets leakage (see Req. F2.3). Further, the user should be

introduced to the structure of the project and its artifacts (see Req. F2.11) to lower the

hurdle even more.

As a user of such a solution, you also want your application to be accessible under a specific

domain. The domain name should not be generated randomly but should be based on

the name of the project. Kubernetes uses DNS to resolve the address of resources. For

example, it uses the scheme <service>.<namespace>.svc.my-domain.io for services [59].

The self-service solution is supposed to tie in with this schema by making the project name

a subdomain of the cluster domain (see Req. F4). Therefore, a project can only get created

if the desired name is available for both a GitLab project and a namespace (see Req. F5).

Additionally, the solution shall set up an ingress rule with TLS termination to be able to

request services in a web browser (see Req. F4.1).

In addition to concrete functions, users also want non-functional requirements to be fulfilled.

It can always happen that the user loses the connection after confirming to create a new

project. The solution should be able to handle a connection loss and still provide the user

with information about the cluster address and the next steps (see Req. NF5). Users also

want the solution and especially its authentication to be secure (see Req. NF7). It shall thus

execute the authorization flow on the server-side and encrypt credentials. Also, the solution

should be usable on di↵erent end devices via the web browser. That is only possible if the

user-interface automatically adapts to di↵erent screen sizes (see Req. NF13).

The overall goal of the solution is to flatten the learning curve and help users get started with

Kubernetes. Therefore, it should not rely on Kubernetes’ custom resource definitions (see
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Req. NF9). Nevertheless, it should not prevent learning. Thus, the solution should display

the generation steps in a comprehensible way so that users can understand what steps are

needed to integrate a Kubernetes environment into a project (see Req. NF10).

3.1.2 Server and Kubernetes Cluster Administrators

Since the solution should rely on virtual clusters using namespaces, an administrator has

an interest in ensuring that users can only work within the namespace intended for them.

The solution must apply authorization rules accordingly (see Req. F3.3). For the account

bound to the namespace, the access data must also be created (see Req. F3.5) and provided

to the user. The latter is to be solved in a secure way using an environment variable in the

GitLab project (see Req. F2.1). Furthermore, it can be necessary for various reasons that

administrators can associate a namespace with a specific person. The solution should thus

associate a user with the namespace to be created (see Req. F6). Another useful maintenance

feature that can relieve administrators of work is the deletion of inactive namespaces (see

Req. F8).

It is also relevant for administrators that they can easily install the solution in a Kubernetes

cluster. For this purpose, a Helm chart should be used to enable the installation with just

one simple command (see Req. NF1). To be able to use the solution in various clusters and

organizations, the installation should be configurable (see Req. NF2). Also, the solution

should only create new projects if it first checks whether there is enough capacity available.

So if a project cannot be deployed in the cluster, the project should not be created either

(see Req. NF14). A crucial aspect for administrators is to give third-party applications as

few rights as possible to minimize the risk of threats. Therefore, the solution should run

without administrator rights for the GitLab server and only use the user rights provided by

the OAuth authorization (see Req. NF6).

3.1.3 Software Maintainers

As a software maintainer, you probably have more interest in the non-functional require-

ments. In order to make optimal use of existing human resources, the technology stack

should be selected so that the organization’s members are able to maintain it. Therefore

it makes sense to align the overall application landscape to one language. In the case of

this thesis, the implementation language for the backend is set to Python (see Req. NF3).

Furthermore, the requirement is that the solution should be designed as simple as possible.

That means that it should be stateless and thus make it simple, horizontally scalable, and

robust (see Req. NF4). To be able to maintain and extend the solution, it is also vital that

the implementation gets tested well. The requirements thus include automated unit tests
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for all endpoints (see Req. NF11).

3.1.4 Organization

The organization also represents specific interests to an internal self-service platform. A

Kubernetes cluster for shared development and hosting is a cost issue. Of course, financial

means are limited, and therefore unlimited computing capacity cannot be made available

to end-users. Individual users must be limited in their use of resources. Thus, the solution

should apply resource quotas for CPU, memory, and storage usage for each self-serviced

namespace (see Req. F3.1). Moreover, a Kubernetes cluster has a maximum number of

objects it can manage. To prevent users from creating large numbers of workloads with

minimal resource requirements, lower and upper limits should also be applied to individual

objects (see Req. F3.2). All quotas and limits should be configurable to the individual needs

of organizations (see Req. F3.4).

When organizations o↵er a service for hosting within a Kubernetes cluster, they should

point out their terms and conditions. These may include legal information, what the use of

secrets entails, what rules to follow when using ingress, and information about logging and

restrictions that apply. The solution shall inform the user of all conditions and request their

confirmation (see Req. F7).

Additionally, the solution should be white-labeled to benefit from it not only in the specific

use case of the Technical University of Applied Sciences Lübeck. That allows other orga-

nizations to easily customize the logos, labels, and terms and conditions to suit their own

needs (see Req. NF12).

3.2 General Design Decisions

The requirements conclude a client-server architecture. A purely client-side application is

precluded. The reasons for this are that the clients should not be given the possibility to

create new namespaces themselves. That would require cluster-wide rights, which only the

server should have. Also, authentication and authorization can be solved more securely with

the OAuth 2 authorization code flow (which requires a server) than with a purely client-side

application.

The user interface should be accessible as a web app in the web browser. There are three

possibilities for the delivery of the web app:

1. Dynamic websites: The server renders the HTML files dynamically based on the

data available to it and then delivers the files to the client. Any interaction takes
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place only by exchanging HTML files between the Web server and the client. Thus,

the complete logic and state gets handled by the server. That is an adequate solution

for displaying personalized content to users. However, this architecture requires a

template engine for dynamic generation and does not fulfill the cloud-native principles

due to its monolithic nature.

2. Single-page applications (SPAs): The web server delivers only a single, minimal

HTML file – no matter which route the client requests. The Document Object Model

(DOM) gets built using JavaScript in the client’s web browser. This principle applies

to the entire web app. When the user clicks on a link or button, the browser does not

send a request to the server. Instead it alters the DOM. If the single-page application

needs to display user-specific data, it requests it directly from the backend’s microser-

vices (typically through HTTP APIs). The services then send back the requested data

(typically in JSON format), and the website updates the DOM according to the re-

ceived data. Typically, a SPA framework also implements lazy-loading, or progressive

loading, for better performance and lower data usage.

3. Static websites: As with SPAs, the web server only delivers static files to the client.

The di↵erence is that the static pages are fully rendered, and there is a separate HTML

file for each route. When the user clicks on a link, the client requests a new HTML

file from the server. The delivered file then contains the complete, rendered DOM. As

with SPAs, user-specific content can be displayed using JavaScript and HTTP APIs. In

contrast to SPAs, however, the website can be displayed without executing JavaScript

in the web browser. That has the advantage that the website is more likely to be

indexed by search engines [60]. But this point is to be neglected since the self-service

solution is supposed to represent an internal platform1.

For the reasons mentioned above, the decision was made in favor of a single-page application.

The backend shall implement a HTTP-based API to which the SPA shall send its requests.

The backend shall be responsible for the authorization procedure, the creation of a project

including the namespace integration, and the sca↵olding of the initial source files. All system

components (which need to be derived in the next chapter) shall run in the same Kubernetes

cluster for which new projects will get created. This implies that the components shall be

containerized.

1Also, there are tools available to generate static sites from SPAs. See https://nextjs.org/ and https:
//nuxtjs.org/ (visited on 10/21/2020)

28



4 Architecture

The achievement of the requirements depends considerably on the system and software archi-

tecture. The system architecture should give a high-level overview of the system components

and their interaction. Before being able to describe the system architecture of a possible

solution, we must determine these components. In chapter 4.2 we will identify (business)

activities and aggregate them into domains. This analysis leads to the architectural ap-

proach that the solution should apply. Accordingly, a diagram will represent all the system

components that have been derived. Afterward, we will design the software architecture of

the individual components in chapter 4.3. The design should not yet specify every detail so

that adjustments are still possible during the implementation phase. That is because at the

beginning of a project, the uncertainty is still relatively high, and by working in an agile

way, you can validate and adapt design decisions iteratively.

4.1 Preconditions

An architectural design is always based on certain assumptions. These must be made in

advance to create an architecture reliably. There are two external systems in total. One is

the Kubernetes Cluster, and the other is the self-hosted GitLab server. For both systems,

certain conditions must now be established. Based on these conditions, a system and software

architecture can then be created.

One requirement is that all system components shall run in the same Kubernetes cluster

as the projects to be created. That has the advantage that the sca↵olding application can

assume the same preconditions for the projects to be generated. It ensures that generated

projects are most probably executable in the cluster because they expect the same technolo-

gies and cluster configuration as the sca↵olding application requires itself. The following list

now elaborates on Kubernetes cluster components, which eventually represent preconditions

for the first external system:

Ingress controller: The single-page application and the API of the backend must

be publicly available to be able to download and use them. For each public service,

Ingress resources get created, which represent rules that an Ingress controller then
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implements. Consequently, the cluster needs an Ingress controller. According to the

Cloud Native Computing Foundation (CNCF) survey from 2019, the Nginx Ingress

controller is by far the most used one [61]. It is also the only open-source controller

maintained by the Kubernetes team [62] and supports, among many other features,

hostname- and path-based routing. Therefore this controller should be used for the

solution to be developed.

Certificate issuing: The TLS termination function of the Ingress controller relies on

certificates that must be issued by a certificate authority. TLS termination encrypts the

data tra�c between clients and the Ingress controller (which acts as a reverse proxy for

all services in the cluster). The cert-manager tool can automatically handle the admin-

istration, order, and renewal of certificates. It integrates well with Kubernetes’ Ingress

concept by watching the annotations of Ingress objects [63]. Further, it supports the

Automatic Certificate Management Environment (ACME) protocol [64], which makes

it possible to obtain certificates from Let’s Encrypt – a certificate authority from which

a user can order up to 50 certificates per week for free [65]. The cert-manager, set up

with Let’s Encrypt as the cluster issuer, is another precondition that the cluster must

meet. The reason for this is because many features of modern web browsers require a

secure context, which involves TLS encryption [66]. And anyway, it is a good practice

to encrypt the data tra�c.

Admission controllers: The usual authorization layer of the Kubernetes API checks

if a user is allowed to request a specific resource type. Admission controllers, on the

other hand, represent an additional verification layer that determines whether a user

is allowed to make a request with this particular specification. Further, they also react

to incomplete specifications by completing them with default values specified by an

administrator. That is especially helpful for compliance with the limits and quotas

in which users have to stay. The upstream Kubernetes version activates all needed

admission controllers by default [67]. But since downstream versions can customize

this behavior, it must be checked that the following controllers are activated:

– LimitRanger (Enforces limit ranges for pods)

– ResourceQuota (Enforces compliance with namespace resource quotas)

– ServiceAccount (Automates service account management)

– DefaultStorageClass (Adds storage class to persistent volume claims)

– NamespaceLifecycle (Rejects requests in non-existent namespaces and prevents

system namespace deletion)
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– AlwaysPullImages (Deactivated by default. If deactivated, users can start pods

using any image that is present on the node without authorization checks.)

Non-privileged containers: The Kubernetes API server should always get started

with the flag --allow-privileged=false . In the upstream version, this is set to false

by default [68] to avoid privilege escalation. It is especially relevant in a multi-tenant

environment.

Role-based access control: Users of the self-service shall only get granted limited

rights, so they stay inside of their namespace. The solution should be based on a

role-based model and therefore requires the activation of role-based access control

(RBAC). When starting the Kubernetes API server, you must activate it by passing the

--authorization-mode=RBAC flag [69]. Depending on the Kubernetes distribution,

the procedure can di↵er.

The second external system for which preconditions need to be elaborated is the GitLab

server. The CI/CD pipeline must be enabled as the solution makes use of automated builds

and deployments. That includes jobs ( builds_access_level=enabled ) [70], shared run-

ners [71], and the container registry [72]. Since there are many ways to install these com-

ponents [73], we will not go into detail here. The shared runners are needed for running

containers in the pipeline. These, in turn, build the container images and load them into

the container registry so that users can use them within the Kubernetes cluster. The ad-

vantage of using GitLab’s built-in registry is that it is well integrated into the CI pipeline

through environment variables and o↵ers managed multi-tenancy functionality. Neverthe-

less, an independent registry could also be configured, for example, one that runs inside of

the cluster.

Another requirement is that users can authenticate themselves via GitLab’s OAuth interface

while also authorizing the web application to create new projects on their behalf. Authorizing

the web application to access user-based resources is essential. With the permission of a user,

the web application can then use GitLab’s API as if the user would use the interface himself.

Therefore, the GitLab administrator must first register the web application and allow it to

use GitLab’s OAuth interface [74].

4.2 System Architecture

The requirements already specify that the solution should be based on a client-server archi-

tecture (see section 3.2). Now it is necessary to find and evaluate a suitable architecture

style for the server-side application. Based on this style, we will then design the system

architecture.
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The solution to be developed should represent a service for students and, in general, software

developers. A service-oriented architecture might seem to be appropriate. There are several

alternatives to this style. On the one hand, there are the two extremes – a monolithic appli-

cation based on a single consistent data model, and many loosely coupled applications, called

microservices, communicating over HTTP. And, on the other hand, these two very puristic

styles get complemented by the more pragmatic miniservices style (see Fig. 4.1) [75]. These

miniservices are also referred to as modular monoliths because they inherit features from

both extremes. Figure 4.1 illustrates that the loose coupling between individual miniservices

is partially broken, for example, by some services accessing the same database. Another dis-

tinguishing feature is the di↵erentiation criterion between di↵erent services. Miniservices get

divided more coarsely based on individual business domains rather than individual business

capabilities. Nevertheless, like microservices, miniservices communicate with each other via

an HTTP API.
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Figure 4.1: Comparison of di↵erent service-oriented architectural styles [75].

The question now is which architectural style is more suitable for the backend system of this

bachelor thesis. To answer it, we will look at Domain-Driven Design. The concept is often

mentioned in the context of microservices to define the boundaries between services [76].

It avoids designing systems solely based on technical requirements. That would otherwise

lead to the division of responsibilities between di↵erent technical architectural layers. The

layers combined express the model of a monolith, and the distribution of these layers is

not desirable because it introduces a lot of complexity. Martin Fowler also defines this in

his first law: “Don’t distribute your objects” [77]. In Domain-Driven Design, the goal is

to break down the silos of technical experts and functional departments, and thus enable
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collaboration and agility.

A recommended method to identify and define individual aggregates is event storming. An

aggregate is a way to draw clear vertical boundaries between services. It consists of several

events that occur within a domain. The method first collects all actors. Each actor then

triggers di↵erent events over time. An event can trigger additional events, which are typically

restricted by policies that, in turn, depend on data. After the collection of all events, they

can be associated with an individual aggregate [76]. Figure 9 shows the results of an event

storming for the solution to be developed. In total, we can identify four aggregates. The

solution must deliver the single-page application, interact with the Git repository provider

(in this case GitLab), assemble the source code of the new project, and integrate it in a new

virtual Kubernetes cluster. Each of them already gives an overview of their functionality

since every event of an aggregate has to be processed. The aggregates now allow us to focus

on the things that actually happen and not on data structures or other technical aspects.

That is crucial for the discussion about which architectural style to choose.

Theoretically, a monolithic application covering all domains would be possible, as well as

the separation into four microservices. However, it is noticeable that serving the SPA is

completely independent of the other three domains. There is no policy between them that

would automatically lead to subsequent events in the last three domains. Only the interaction

of the user himself leads to events in the last three domains. Nevertheless, there are many

automatic subsequent events for which the user is only implicitly responsible and which get

handled internally. In other words, you can draw a distinct vertical line between serving the

SPA and the rest of the domains. The clear distinction between the interaction with the

Git repository provider, the assembly of the source code, and the integration into a virtual

cluster, however, is not that obvious.

The idea is to apply a hybrid model consisting of a distinct microservice for serving the SPA,

and a monolithic service. The latter should cover the requirements of the three remaining

domains. This idea can be justified with the following factors:

At the beginning of a project, the strict boundaries that usually separate microser-

vices are still uncertain and unstable. They only establish themselves gradually over

time, which is why it is worth starting with a monolith and breaking out individual

microservices from it after a while [78]. Afterward, they can evolve independently and

cope with new demands. That is also the opinion of Sam Newman, who is “convinced

that it is much easier to partition an existing system than to do so upfront with a new

one. You have more to work with. You have code you can examine, you can speak to

people who use and maintain the system. You [..] have a working system to change,

making it easier for you to know when you may have got something wrong or been too
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aggressive in your decision-making process. You also have a system that is actually

running [and which you can use as a baseline from a performance point of view]” [79].

The microservices architecture style was introduced to handle complex systems. How-

ever, the style also brings its own complexity. New challenges can include automated

deployments, failure handling, concurrency, and eventual consistency. This overhead

is also known as microservices premium [80]. Several architecture consultants and

software engineers, including James Lewis, Sam Newman, Thiyagu Palanisamy, Evan

Bottcher, and Martin Fowler, therefore claim that microservices should be considered

when the system is too complex to be managed as a monolith [80]. In contrast, the idea

proposes to develop only three domains within a monolith. Furthermore, the system

should apply the self-service principle and will thus be based on only one actor, the

user himself. Therefore, it can be said that the possible solution is not complex and

that it should be easy to manage it in a monolith.

One of the goals of microservices is to achieve higher agility through cross-functional

teams, loose coupling, and the minimization of complexity within a service compared

to the monolith [21] [81]. However, this argument does not make sense when working

on this bachelor thesis since only one developer is working on the solution. There is

no need to distribute business units or teams, and there is no need to work in parallel.

The application should solve only one single, very concrete use case. The estimated

implementation time is four weeks. Thus, the development phase does not extend over

a long period of time, and there is no need to quickly, independently, and iteratively

deliver new components and features in a large system.

Probably the most influential argument for microservices is the good horizontal scal-

ability. However, this is not relevant to the project, as the number of users can only

be as large as the number of members of the organization o↵ering the service. That

is because each organization would deploy an independent instance of the service in

its own cluster. Besides, the available cluster capacities would probably be exhausted

before a high demand would overwhelm the service. Furthermore, the service is to be

developed stateless anyway, which would also apply to a monolithic architecture.

Monolithic does not necessarily mean that the domains and corresponding modules

must be tightly coupled. As with microservices, the modules can be loosely coupled

through well defined and stable interfaces. In particular, the fact that the service is

supposed to be stateless makes loose coupling easier, since the modules do not have to

share a common persistence model.

Figure 4.2 shows a system architecture that applies this hybrid model. Since all system

components shall run in the Kubernetes Cluster, we will introduce the Kubernetes-specific
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components directly in the diagram (see the parentheses). As written in the chapter about

the preconditions, an Ingress Controller is part of the system architecture. It acts as a

reverse proxy between the separate services and the end-users. The separate services consist

of the web server for serving the SPA, and the Sca↵older API server. The latter comprises

the three aforementioned domains, which are to be developed together in a monolith. The

Sca↵older application uses two external services: the GitLab and Kubernetes API servers.

To be able to access these external services, the application needs the necessary rights.

Therefore the whole system is located in a separate namespace for which a default service

account with cluster-wide rights will get created. That means that, as long as the application

runs inside of the namespace, it automatically has access to all resources in the cluster via

the Kubernetes API Server. The namespace also contains a secret for the so-called “client

secret”, which is required for the OAuth protocol to request a token from the GitLab API

server. In addition, the Sca↵older application connects to an in-memory database so that

the service alone is truly stateless and can be seamlessly scaled and reinstated. The pod

of the Sca↵older API server could also be instantiated via a horizontal pod autoscaler (a

Kubernetes-specific component that automatically scales resources) and would then satisfy

all cloud-native properties. However, this is not required at present.
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Figure 4.2: High-level overview of the system architecture.

35



4.3 Software Architecture

The software architecture essentially consists of two components. As shown in the system

architecture, there are two containerized applications. That is, on the one hand, the user

interface (frontend), which gets served by a web server, and on the other hand, the Sca↵older

API server (backend), which implements the logic. Section 4.3.1 derives endpoints and tasks

from the events of the event storming, and explains the project sca↵olding of demonstration

applications. Furthermore, section 4.3.2 presents a wireframe for the user interface.

4.3.1 Backend

The backend implements a web server that publishes specific endpoints that the end-user

can request through the web app. A request to such an endpoint means that the backend

has to perform a task. These tasks can easily be translated into events that have already

been identified during the event storming. Therefore, these tasks get listed in table 4.1 below

with the corresponding endpoints.

Method Endpoint Task(s)

GET Check session Check if session valid/available

GET Login Forward user to the GitLab login page

GET Authorize
Request the access token from the GitLab API server;

Save new session

GET Logout Invalidate session

GET Check capacity Check if the cluster has su�cient capacity for a new project

GET Check name Check if the project name and namespace is available

POST Create project

Create new namespace;

Configure new namespace;

Create new GitLab project;

Configure new GitLab project;

Assemble the project files according to specification;

Upload the project files

Table 4.1: Endpoints of the Sca↵older API server

“Check capacity” is not listed in the events. This task comes from a non-functional require-

ment that new projects should only be created if the cluster capacity allows it. Altogether,

the tasks can be divided into three major categories. These categories are: managing the

authorization, the project creation, and the creation and assembly of the source code for the
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demo application, which the user specifies during the creation process. The latter is also

called sca↵olding (hence the name “Sca↵older API Server”). It uses a template engine that

generates source code based on templates and the user’s project specification. More on this

in the paragraph about the project sca↵olding.

Authorization through OAuth 2.0

GitLab o↵ers three di↵erent ways for users to grant rights on their GitLab account to a

client application [82]. Client-only applications can use the implicit grant flow, which issues

an access token to the client immediately after authorization. Since the self-service solution

is based on a backend server, this flow is not necessary. It has security risks anyway since

the access token is stored directly on an end device. Another method is the “resource owner

password credentials” flow. It allows the user to enter the access data (including the pass-

word) for the GitLab account directly in the client application’s user interface. With these

credentials, the backend server can then request an access token. This method is the least

secure method since the client application can attain any rights scope. Furthermore, it does

not provide security features such as two-factor authentication. The recommended method

is the authorization code grant flow. Figure 4.3 illustrates how it works. When the user tries

to log in to the Sca↵older app, he or she gets redirected to the GitLab authorization page

(via the login endpoint of the Sca↵older app). If the user then grants the Sca↵older app

the rights to his GitLab account, the GitLab server redirects him to the “Redirect URI”1.

That is, in this case, the authorization endpoint of the Sca↵older app. The task is then to

use the code to request an access token for the GitLab API. Once the token is received, the

Sca↵older API server can access the user’s resources.
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ClienW

(Scaffolder API SerYer)
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(GiWLab API SerYer)

4) Woken
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Login
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Figure 4.3: Illustrating the OAuth 2 authorization code grant flow.

1As mentioned in the preconditions, the GitLab server admin must set this URI when registering the
sca↵older app.
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After the successful authorization, the access token must be stored in a session. For this

purpose, the system architecture provides the in-memory database. It stores key-value pairs,

each representing a session. The access token represents the value, which can be accessed

by a randomly generated string as the key. This randomly generated string then gets set as

a cookie in the user’s browser. The browser sends the cookie with each request back to the

Sca↵older API server so that it can identify the user.

Project Creation

Before the Sca↵older API server can create a new project, it must check two things. First,

it must check if the cluster capacities allow the allocation of additional containers. That

means that the number of active pods added to those that the new project would request

must not exceed the maximum number of possible pods (of all cluster nodes together).

Furthermore, the creation of a new project must not exceed the physical cluster resources

(e.g. CPU, memory). This task gets executed when the client requests the “check capacity”

endpoint. And second, the app has to check if the desired name is still available – both

for the namespace and as GitLab project name. Normally, the check of one of them would

be redundant, because it would fail anyway if the server requests the creation for one of

them. But since the name is to be checked directly while the user types, there must be the

additional endpoint “check name”.

Once these two criteria have been checked, the project generation can start by sending

a request to the “create project” endpoint. The following list describes all tasks to be

executed:

The endpoint represents a POST method and therefore receives a body. The content

(project name and specification) thus must be parsed.

The Sca↵older API server must each send a request to the Kubernetes API server to

– create a new namespace,

– apply a limit range for new objects in that namespace,

– apply resource quotas that get enforced in that namespace,

– create a restricted role in that namespace,

– associate that restricted role with the default service account of that namespace,

– and retrieve a list of all secrets in that namespace (including the token and cer-

tificate of the default service account).
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In order for the user and the CI pipeline to access the namespace, the Sca↵older

API server must generate the credentials before. It does that by decoding the base64

encoded secret of the default service account and creating a kubeconfig file from it.

The Sca↵older API server must each send a request to the GitLab API server to

– create a new project,

– set an environment variable in that project with the content of the kubeconfig file

so that the CI pipeline runners can gain access to the namespace,

– and create a project-dependent deployment token that can be used to read the

project’s container registry.

The demo applications use the CI pipeline to automatically build containers from the

source code, which then get pushed into the container registry. In order for the con-

tainer puller (in the Kubernetes cluster) to have access to this registry, it needs a secret

containing the access data. The sca↵older API server thus requests the Kubernetes

API server to create a secret within the created namespace. This secret contains the

previously created deployment token.

Depending on the project specification, another secret has to be created. If the user

wants a database, the Sca↵older API server has to generate a randomly generated

password for this database and store it in the namespace. That allows the demo

application to retrieve the database password via the environment variables.

The Sca↵older API server must assemble all source code files based on the desired

project specification. More on this in the next paragraph.

The final step is to commit all source code files to the Git repository. The Sca↵older

API server must convert the files to a JSON payload and then POST them to the

GitLab API server.

Project Sca↵olding

One of the main goals of the solution to be developed is to flatten the learning curve of

Kubernetes by introducing typical Kubernetes workloads based on a simple demo applica-

tion. The idea is to let the user select his desired technology stack by three layers. Depending

on what the user needs, he can then easily choose from components he is already familiar

with. This way, the user does not have to familiarize himself with Kubernetes-specific terms

before even starting a project.

When defining the layers, the challenge is to find a use case that is simple, but at the same
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time can cover all typical Kubernetes workloads and can also be completely customized from

a technology perspective. That also means that the user can exclude individual layers that

he does not need. A possible use case could be a simple CRUD application (CRUD stands for

create, read, update, and delete), which allows altering a list of not further specified names.

The user could then select his desired components from the following three layers:

1. User Interface: The user interface layer implements a web app that allows users to

alter the list in a web browser. It accesses the list via the application’s HTTP API.

VanillaJS (Static website)

Vue.js (Single-page application)

React (Single-page application)

2. Application: The application layer implements a web server that exposes an HTTP

API with endpoints to alter the list. This layer is mandatory.

Java (with Spring Boot)

Python (with FastAPI)

Node.js (with Express)

3. Data Storage: The data storage layer provides a storage solution to save the list.

By default, this storage is ephemeral, but the user shall have the option to select

persistence so that the data gets stored in a persistent volume. If the user excludes this

layer, the application will store the list in a language-based in-memory data structure.

In that case, the application layer would be stateful.

MySQL (Relational database)

MongoDB (NoSQL, document-based database)

Redis (NoSQL, in-memory data structure store)

With the help of the above-mentioned layers, it is possible to cover the Deployment and

StatefulSet workload. Furthermore, they allow the demonstration of typical CI/CD exam-

ples. The missing job and CronJob workloads can be covered by two additional use cases.

For example, the user could select that the names list should be cleaned up automatically

(Cleanup layer). A CronJob then runs on a specific schedule and shortens the list to a

certain number of entries. In addition, there may be another endpoint in the application

that allows it to start a job that adds many names to the list (AddMany layer). This

endpoint can also be accessed via a button in the user interface. When the user presses the

button, a job gets executed, and n entries get added to the list. This job may not be a
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typical use case for jobs because it could also be executed synchronously and is not neces-

sarily CPU-bound. However, it should be su�cient to demonstrate the job workload, as it

shows how to define job objects and execute them within an application via the Kubernetes

API server. This way, the simple use case of a CRUD app can cover all workloads from the

requirements.

The well-defined HTTP interface of the application layer allows for easy exchange of the

web app within the user interface layer. Each web app implementation always accesses the

same interface. At the data storage layer, this is less easy because each database exposes

its own interface. The database cannot be exchanged without adapting the source code of

the application. This could only be avoided if an additional service gets placed before the

respective database. It would abstract the database protocol and expose a unified HTTP

interface. If we choose a specific programming language in which this service should get

implemented, it could significantly reduce the amount of work involved. However, this has

no added value for the user. On the contrary, it would introduce unnecessary concepts and

would not allow the user to access the database directly from the application. Therefore

each implementation at the application layer must implement an individual connector for

the database. That leads to an increased workload for the author but is then easier to

comprehend for the user. The same applies to starting jobs from within the application,

which must get implemented for each application individually.

After implementing and testing the individual technology stacks, the source code must get

converted into templates that a template engine can process. That means that the Sca↵older

API server has access to a folder where all source code templates are stored. It can then use

the template engine and project specification to generate an individual demo project for a

user.

4.3.2 Frontend

The frontend shall be based on a single-page application (SPA) that communicates with

the Sca↵older API server via HTTP requests. SPA frameworks typically already provide a

general project structure. In this case, the author will use Vue.js as the SPA framework as

he has the most experience with it. In addition, a component-based CSS library will be used

to minimize the development time for the layout and design. The following wireframes in

figure 4.4 show how the user interface requirements will get covered.

Although it is called a “single-page application”, the user interface consists of several pages.

As already explained, only one page gets loaded initially, and then the DOM gets altered

by the JavaScript code. Depending on whether the user is logged in, the app will show the

corresponding page. If not logged in, the app will show the welcome page. This page includes
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Figure 4.4: User interface wireframes of the Sca↵older application.

a short explanation about the service and a button that allows the user to log in with their

GitLab account and authorize the Sca↵older application to create a project. Once the user

is logged in, the project configuration page appears. It allows the entry of project-specific

details and the specification of the previously discussed layers. The info icons next to each

layer are used to display tooltips. As soon as the user hovers the mouse over them (or clicks,

if on mobile devices), a description and a hint in which use case the layer can be useful gets

shown. The first three layers use a dropdown list instead of radio buttons. This way, the

o↵ered technologies can easily get extended in the future without changing the user interface.

Also, it allows the user interface to request a list of possible options from the backend server

and adapt its dropdown list accordingly.
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5 Implementation

As described in the architecture chapter, the challenge is that some of the technologies are

still unknown, and requirements and decisions need to be validated as the work progresses.

Therefore, an agile way of working was chosen for the implementation phase. That means

that individual work packages were derived from the requirements for each week. However,

these work packages are only specified in their functional requirements by the architecture

chapter. The reason for this is because it represents a substantial risk to put too much time

into the exact software design, only to find out during the implementation phase that the

decisions were wrong and that it is not realizable in such a way. The individual software

components are interdependent, and therefore it is wise to evaluate implementation decisions

for each work package as needed and validate them with the start of the next work package.

The same applies to the initial requirements. In the course of the work, it has become

apparent that requirements have to be adapted. Therefore, the purpose of this chapter is to

describe the actions of the last weeks and to discuss the decisions made.

5.1 Project Structure

The project consists of a mono repository that contains the source files for the backend,

frontend, and the Helm chart. Since these areas were each implemented in di↵erent lan-

guages and frameworks, they get examined individually and independently in the following

sections.

5.1.1 Backend Services

The requirement for the backend was that it should be implemented in Python for bet-

ter integration into the current system landscape of the university. In the beginning, the

choice of the web framework was up for discussion. There are two popular frameworks in

Python – on the one hand the full-stack framework Django and on the other hand the mi-

croframework Flask [10]. The di↵erence between full-stack and microframeworks is that the

full-stack frameworks o↵er significantly more features out of the box. That means that they

o↵er, among other features, the Model-View-Controller pattern with server-side templates
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and object-relational mappers with database connectivity. However, since the Sca↵older

API is not intended to render dynamic pages, but only to provide a JSON-formatted HTTP

interface, we do not need the large feature set of a full-stack framework. In the end, the

author chose the microframework FastAPI. Its API is much inspired by Flask, but addi-

tionally, it o↵ers numerous advantages. As the name suggests, the resource usage is lower.

It also provides request and response validation, OpenAPI documentation generation, and

improved IntelliSense (respectively auto-complete and typing)1.

The first step was to implement the API controller. The backend specification in chap-

ter 4.3.1 already provides the HTTP endpoints. Table 4.1 thus results in the following

endpoint handlers:

Listing 5.1: The API controller implementing the HTTP endpoints. (Backend/sca↵older/-

main.py)

1 app = FastAPI()

2

3 @app.get("/api/login")

4 def login():

5 ...

6

7 @app.get("/api/auth")

8 def authorize(state: str, code: Optional[str] = None):

9 ...

10

11 @app.get("/api/check-session", response_model=responses.CheckSession)

12 def check_session(response: Response, sid: Optional[str] = Cookie(None)):

13 ...

14

15 @app.get("/api/logout")

16 def logout(sid: Optional[str] = Cookie(None)):

17 ...

18

19 @app.get("/api/options", response_model=responses.TechStackOptions)

20 def options():

21 ...

22

23 @app.get("/api/check-capacity", response_model=responses.CheckCapacity)

24 def check_capacity():

1https://fastapi.tiangolo.com/ (visited on 12/20/2020)
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25 ...

26

27 @app.get("/api/check-name", response_model=responses.CheckName)

28 def check_name(name: str, sid: Optional[str] = Cookie(None)):

29 ...

30

31 @app.post("/api/project", response_model=responses.ProjectDetails,

32 status_code=201)

33 def create_project(spec: requests.ProjectSpecification,

34 sid: Optional[str] = Cookie(None)):

35 ...

For better readability, the above listing omits the imports and concrete implementations

of the controller methods. These methods do not implement any functional requirement

themselves but instead call functions from service modules. The authorization and scaf-

folding functionalities were outsourced to these service modules. They are located in the

/scaffolder/services directory and are imported as singletons. Although, strictly speak-

ing, they do not fulfill the singleton pattern as known from the gang of four. But since

modules in python get initialized only once, modules always reference to the same imported

module object [83]. However, the API Controller is the only module that imports the service

modules and thus serves as the link between the modules. Specifically, this means that, for

example, the check_name() endpoint handler must use the appropriate service modules

to check whether a user is logged in and whether the project name is available in both the

user’s GitLab account and the cluster.

Authorization and Session Management

The first important service implements everything related to authorization and session ma-

nagement. The module is located in the /scaffolder/services/auth.py file. Once im-

ported by the API controller, it initializes two thread-safe Redis database connections. Ap-

plication states that have a retention time longer than a single request must be implemented

thread-safe. The reason is that the API controller is run by an “Asynchronous Server Gate-

way Interface” (ASGI) server, which calls the handlers in concurrent threads. Back to the

Redis connections. The first connection is made with virtual database number 0 and is

responsible for holding the sessions. In this case, the module only uses Redis’ hash map to

store the session IDs and the associated GitLab API access credentials. The second con-

nection to virtual database number 1 stores randomly generated strings, which only serve

another security aspect during authorization. All keys, both in database 0 and 1, have an

expiration time, which is defined in the config.py file and can automatically be set via
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environment variables. For the sessions, the expiration time gets reset with each user in-

teraction. The keys with the random strings, on the other hand, expire after a fixed time

without exception. Without the context of the individual module methods, the purpose of

these Redis connections may now be somewhat obscure. Therefore, the following OAuth 2.0

flow example provides an overview of the crucial methods.

Once a user presses the login button, the browser requests the login() endpoint, which in

turn calls the auth.get_login_redirect_url() method to retrieve a new redirect URL.

This URL contains information so that the GitLab OAuth API knows which application

requests access rights to the user’s account. Additionally, it contains a randomly generated

string called “state”. When redirecting the user back to the Sca↵older application, the

GitLab API includes the same state parameter to the authorization redirect URL so that

the Sca↵older API can check whether this string exists in the database. The OAuth flow

implements this approach to prevent cross-site request forgery attacks [84]. Without the

state parameter, any other website (or attacker) could potentially trick the user to request

the authorization endpoint and thus changing the application’s state.

After the user has successfully authorized the Sca↵older app in the GitLab user inter-

face, GitLab redirects the user to the authorization endpoint of the Sca↵older API. The

authorize() endpoint uses the auth.is_state_param_present(state) method to check

if the state parameter is present and then creates a new session. For this purpose, the mod-

ule implements the auth.get_new_session(code) method. The code parameter that gets

passed is a one-time code to request an API token. The method then requests a new API

token for the user from the GitLab API using the code, app ID, and app secret. If the

request is successful, the method creates a new random session ID and stores the user’s API

credentials in a session (with the session ID as the key and the credentials as the value) in

the Redis database. Finally, the endpoint sends a response, including a session cookie (with

sid as the key and the session ID as the value) and a redirect to the Sca↵older’s home page.

The corresponding session cookie only allows connections that are originating from the same

domain (SameSite=Strict) and that are secure (Secure flag, meaning only TLS encrypted

connections). Moreover, it cannot be queried or manipulated by the script since browsers

only include it in the HTTP request when making requests to the origin server (HttpOnly

flag).

When the user returns to the Sca↵older’s home page, the SPA automatically sends a re-

quest to the check_session() endpoint. The auth.is_session_valid(sid) method

then checks if the session ID, which the request includes as a cookie, is valid. The method

fetches the user’s API credentials from the database and verifies that it can retrieve the user

data via request to the GitLab API. If the user data is successfully retrieved, the Sca↵older

API replies with the corresponding CheckSession response, which includes the user name.
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The user interface can now display that the user is logged in by writing the name into the

navigation bar. Additionally, that also allows displaying a log out button. In case the re-

quest to the GitLab API was not successful, the Sca↵older API deletes the user’s cookie when

sending the negative CheckSession response. Another case when the cookie gets deleted

is when the user logs out. In this case, the user sends a request to the logout() endpoint.

It calls the auth.delete_session(sid) method to delete the session from the database

and then redirects the user back to the home page with an invalidated cookie.

Communicating With The GitLab Server

After the user logged in, he can fill out the form to specify a new project. As soon as the

user enters the desired name of his new project, the SPA automatically sends a request to

the Sca↵older API to check the name’s availability. For this, the Sca↵older API controller

implements the check_name() endpoint, in which it needs to communicate with the GitLab

API server and the Kubernetes API server. The corresponding module to communicate with

the GitLab server is located in the /scaffolder/services/git.py file. The git module

implements the method is_name_available(access_token, name) , which requests a list

of all user projects and then compares the existing names with the desired name. An essential

point to mention here is that this method is the only one that uses the Python wrapper for

the GitLab API. The reason is that the number of user projects can be relatively large and

the GitLab API thus returns the projects only in segments. The wrapper provides automatic

pagination so that the method can easily iterate through all projects. However, the wrapper

has the disadvantages of not o↵ering IntelliSense and not allowing project-specific method

calls via a project ID like the GitLab API, so it was excluded for further use in the other

methods. Instead, they simply call the HTTP endpoints of the GitLab API. In hindsight,

this decision can surely be questioned. However, the GitLab API is well documented so

that the author sees no disadvantage in using the project endpoints directly without API

wrapper.

The next step of the user is to create the project. The web app sends a request with

the appropriate project specification to the create_project() endpoint. The endpoint

handler is responsible for creating a GitLab project, a Kubernetes namespace, and the

source code for the demonstration app. It does that by simply calling the methods of

each service module. For creating the new GitLab project, the git module implements the

git.get_new_project() method. When the handler calls it, it passes the project specifica-

tion, the user’s GitLab API credentials, and the cluster details (Kubeconfig of the service ac-

count and the namespace) as arguments. The git module then creates a new GitLab project

on behalf of the user, two new environment variables for the CI/CD runners (respectively

KUBECONFIG and K8S_NAMESPACE ), and a deployment token to allow the cluster to pull
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container images from the project-specific container registry. After the handler receives the

source code of the demonstration application, it calls the git.commit_and_push_files()

method to upload the files to the repository. In turn, this method sends all the files as a list

of JSON objects to the GitLab API server.

Communicating With The Kubernetes Cluster

As soon as the Sca↵older web app gets opened by the user, it asks the Sca↵older API whether

the cluster has enough resource reserves available for a new project. If this is not the case, the

frontend informs the user and does not allow any project creation. When the corresponding

check_capacity() endpoint gets requested, the handler calls the

cluster.is_capacity_sufficient() method of the cluster module

( /scaffolder/services/cluster.py ) and asks if at least 5 percent of the cluster capacity

is still available. The implementation is a bit more complex because there is no endpoint

for requesting the overall resource usage. Therefore, the capacity must be queried for each

cluster node in order to o↵set the summed capacity with the consumption of all pods in

the cluster. An open-source script was used for the implementation (see the docstring of

the cluster.get_allocated_resources() method for more information). The method

only considers the requested resources, not the limits. Since individual applications are pre-

sumably rarely used at full load, it should also be possible to overcommit resources. Thus,

more students could use the cluster and exceed their requested resources for a moment if

needed.

As described in the previous paragraph, when the user types in the desired project name, the

check_name() endpoint checks whether the project name is still available. Since names-

paces in the cluster shall be based on the project name, their availability must also be

checked just like in the git module. Therefore, the cluster module implements a similar

is_name_available(name) method, which checks whether the desired namespace is avail-

able in the cluster. Also, the method makes sure that the namespace does not start with

kube- since these are reserved for system-internal namespaces.

Kubernetes namespaces must always meet the criteria of a fully qualified domain name

(FQDN) since pods include the namespace in their full network address. However, since

user input does not necessarily fulfill domain name constraints, the method still has to

convert the passed name into a so-called slug. The idea is that each new project gets a

namespace that corresponds to the slug of its project name. The namespaces must be

unique and can therefore be used as a subdomain for the ingress rules. A slug removes

all special characters and replaces them if necessary. Spaces get filled with hyphens, and

the string gets written in lower case. For example, the string “Lübecker Straße” would be

converted to “luebecker-strasse”. However, the conversion to a slug is not only needed here
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but also by other modules. Therefore, a utility module ( /scaffolder/services/util.py )

with the get_slug() method has been implemented to ensure consistency. In addition, this

module also implements the get_random_str() method to generate random strings. It is

needed, for example, when generating the previously mentioned state parameter, a session

ID, or database keys.

The previous section also mentioned that, in order to create a GitLab project, the Kubecon-

fig file must be passed to the appropriate method. Only then the CI/CD runners can execute

commands in the namespace. But for that, the namespace has to be created and configured

in the first place. For this, the cluster module implements the get_new_namespace()

method. As arguments, it receives the namespace’s name and, to be able to associate the

namespace to a user for administrative purposes, the email address of the user. It then

creates a new namespace by rendering a YAML-formatted template and applying it to the

cluster (comparable to the apply command of the Kubernetes CLI). The configuration of

the namespace consists of applying resource quotas ( ResourceQuota ), limits to the value

ranges of resources ( LimitRange ), a role with restricted rights ( Role ), and a role associ-

ation to the default service account of the namespace ( RoleBinding ). After the method

successfully created and configured the namespace, it returns the content of the Kubeconfig

as a string.

There are two ways to programmatically create individual Kubernetes resources in the clus-

ter. The first way is to initialize Python objects using modules from the

kubernetes.client.models package. Especially for large resource specifications, this

bloats the code a lot, but again gives the possibility that you can insert variables in the

resource specification. The other approach is using the yaml module provided by the

Kubernetes API wrapper. It allows YAML-formatted strings to be converted to a resource

specification and created directly in the cluster. It also allows the conversion of multiple re-

lated resources from a single string. This alternative feels more natural in use and increases

the readability. The downside is that you can only convert static strings with it. Since the

Sca↵older application depends on a template engine anyway (to create the demonstration

application), it can also be used in this module to dynamically insert values in the YAML

resource. Therefore, the author decided to create the resources using only templates, which

are rendered and then converted by the yaml module. All templates used by the cluster

module are located in the templates/namespace_creation directory. Jinja was chosen

as the template engine. The reason for this is that the templates should also support logic

to adapt the demo application’s source code to the user’s needs. That leads to a stricter

separation between the templates and the Sca↵older’s source code. For example, a user

could want to run asynchronous jobs and thus the demo application’s template must add

the corresponding part of the source code when rendering. Due to the logic support, the
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popular engines Mako and Jinja remained. However, unlike Mako, Jinja o↵ers a syntax that

is more similar to the Go template package. Since the Helm charts are also based on the

Go syntax, Jinja was ultimately chosen.

As mentioned, keys get generated during the creation of a GitLab project and the asso-

ciated source code. Among them are, for example, the access data for the container reg-

istry and, if specified by the user, the database credentials. The cluster module must

now store these as secrets in the user’s namespace. Since the types of secret resources

and correspondingly their resource definition di↵er, there must be di↵erent methods for

creating secrets. The set_registry_credentials() method creates a secret of the type

kubernetes.io/dockerconfigjson . It renders the registry_credentials_secret.yaml

template by inserting an encoded dockerconfig into the template. The private

__get_docker_config_json() method creates the required string by rendering the

dockerconfig.json template using the user’s registry credentials. The set_secret()

method, on the other hand, is simpler, as it only creates a secret of the type Opaque . The

associated secret.yaml template receives only a name, a key name, and a key value and

then gets applied to the cluster.

Creating Demo Applications

When the user opens the web app, it automatically asks the Sca↵older API for the options

available to the user. The Sca↵older API controller implements the options() endpoint,

which simply calls the scaffolder.get_tech_stack_options() method. It returns all

possible technology stack options. That allows the backend to be developed and extended

independently of the frontend.

However, the main purpose of the scaffolder module is to generate the source code for

the demonstration application. The templates for all applications, Kubernetes manifests,

and other source code files are located in the /templates/demo_application directory.

The get_source_code_files() method creates a list of files that each get stored in a

dictionary in the form of { "file_path": str, "content": str } . In addition, if the

user wants a database in his stack, it also creates the credentials for the database, which get

stored in another list of secrets. The caller of the method, in this case the endpoint handler,

receives both lists. It thus is responsible for creating the secrets and uploading the source

code to the repository.

But the said method is not responsible for the rendering of the templates itself. Instead,

it creates filter functions, which depend on the user’s requirements, and then calls the

__generate_files_from_templates(filter) method. This, in turn, renders only the

templates that fulfill the filter. The filter gets applied to the directory path of a tem-
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plate. To understand how a filter function works, you need to know the directory struc-

ture of the templates. The templates/demo_application directory contains folders for

the individual components that the user will later find in his project repository. For

example, these are folders for the application, the user interface, the cron job, and the

Kubernetes manifests. In each of these folders, equivalent to the names of the technol-

ogy options, are subdirectories that contain the source code for all options. Accordingly,

the filter functions must filter for these subdirectories and delete the specific technology

option name from the directory path. An example of a user selecting a project with

go_fiber as the option for the application layer would be that the filter function includes

the /application/go_fiber subdirectory but excludes all other subdirectories within the

/application path. The resulting path of each source file then omits the technology op-

tion. For example, the template path /application/go_fiber/main.go results in the

source path /application/main.go .

Another challenge is to adapt the demo application’s source code to the corresponding

database. For this purpose, each application template contains a data_access folder in

which the source code files for the individual database connectors are located. Accordingly,

the filter function for the application source code got extended for the data_access di-

rectory. For example, if the user selects mysql as database, only the mysql.* file gets

rendered. This extension was possible for all templates except the java_spring template.

Since the Spring framework is very opinionated in the choice of the directory structure and

the implementation of the so-called “data repositories”, simply too much source code had to

be adapted for the respective database connector. A single template for the java_spring

option would involve a lot of logic in the template and the Sca↵older’s source code itself.

Also, the template’s directory structure would change with di↵erent database connectors.

The author thus decided to split it into four independent templates for better maintainability

and readability.

Additionally, the scaffolder module implements the save_source_code_files() method,

which is used during development. If the IN_CLUSTER environment variable is not set, then

the application assumes it is in development mode. If that is the case, the application will

not create a new GitLab project and namespace but save the source code in a new directory

on disk. That allows developers to work on templates faster and iteratively without wasting

resources each time.

Containerizing The Sca↵older API Server

The Sca↵older app should run directly inside of the Kubernetes cluster. Therefore, a con-

tainer image must be created beforehand. The Dockerfile, as described in chapter 2.1,

provides the blueprint for the image. Each time the source code gets updated and pushed to
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the project repository, the GitLab CI pipeline builds the container image of the Sca↵older

app according to the /Backend/Dockerfile .

The notable features of this Dockerfile are that it locks the base image version to a major.minor

version and does not use latest as the image tag. It ensures that there are no breaking

changes in the Sca↵older’s base image that can cause problems. Also, the source code gets

copied to the image in two separate steps. First, the requirements.txt file gets copied,

which contains all dependencies. Afterward, these get installed by the pip install com-

mand, and accordingly, as explained in chapter 2.1, the layer gets cached. Only then the

actual source code gets copied. Since the source code changes much more frequently than

the dependencies, this layer caching principle saves a lot of build time. Another best prac-

tice to further minimize the risk of privilege escalation is to run the application inside of

the container only as a non-root user. Therefore, the Dockerfile includes a command that

creates a new user. It a↵ects the way how files should get copied into the container image,

which is why the --chown flag is now set in the COPY command.

Unlike the example from Chapter 2.1, the ENTRYPOINT command is not used. That is

because the Sca↵older app is not an executable program for the command line. With the

ENTRYPOINT command, one usually specifies an executable program and then uses the CMD

command to specify its default parameters. Therefore the author decided to use the CMD

command in the exec form (meaning as an array with an executable as the first entry). The

respective CMD ["uvicorn", "scaffolder.main:app", "--host", "0.0.0.0",

"--port", "8080"] command specifies to start the web server as the first process in the

container.

5.1.2 Frontend Web App

The single-page app, on which the frontend is based, uses two key frameworks. The first

is the JavaScript framework Vue.js2, which can be used to build component-based user

interfaces. Together with the Vuex3 state management library, it implements the model-view-

viewmodel pattern. The Vuex store represents the model and implements the connection to

the backend. Each component consists of a script ( <script/> ; representing the modelview)

and a Markup template ( <template/> ; representing the view), which binds the data from

the script. However, since this work is not about a frontend framework, this section will

only explain the choices made about the components themselves. As the second framework,

the choice fell on Bootstrap. It is a component-based CSS (Cascading Style Sheets) design

system. Developers can use it to build websites quickly, as they only need to select the

components and slightly adjust them if necessary. It also o↵ers a direct grid system, which

2https://vuejs.org/v2/guide/ (visited on 12/21/2020)
3https://vuex.vuejs.org/ (visited on 12/21/2020)
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enables responsive websites – that means the automatic adaptation to the screen size. For

Vue.js there is the library Bootstrap-Vue4, which is used in this project as an integration of

Bootstrap within Vue.js. It provides native event and property binding for the Bootstrap

components.

State Management

Before discussing the individual components, here is a brief explanation of how the web

app manages its state and communicates with the Sca↵older backend interface. Continually

passing properties from one component to another nested one is considered a bad practice.

That is because this requires to synchronize the copied state between components via events.

One solution is to make use of the store pattern, which essentially supplies each component

in the tree with the same instance of an observable store. In this case, the store.js file

exports the store object, which then gets imported by the main.js file (see listing 5.2).

Setting the store property of the Vue instance makes the store available globally as a

singleton. The store instance thus gets injected into each component. These components

can then dispatch “actions” and commit “mutations”. That leads to better maintainability

and gives the ability to observe and manipulate a unified state via development tools.

1 import store from ./store

2

3 new Vue({

4 render: h => h(App),

5 store: store

6 }). mount( #app )

Listing 5.2: Code snippet from the main file of the frontend demonstrating the store injection.

(main.js)

In total, the state of the store comprises twelve variables, most of which are self-explanatory.

The only variable that may need to be explained at this point is the showCreateProjectPage

variable. Normally, in larger projects with many di↵erent pages, you would implement a

router. It allows the use of di↵erent URLs and navigation across multiple pages. However,

the Sca↵older’s SPA only consists of a welcome page ( <Welcome/> ) and the page where the

user can specify his project ( <CreateProject/> ). Therefore, the author chose a pragmatic

solution and solved the navigation based on a state variable. The app switches between the

two pages via the v-if="showCreateProjectPage" directive (see

/src/components/App.vue ).

4https://bootstrap-vue.org/docs (visited on 12/21/2020)
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What is more important are the three actions that the store implements and that com-

ponents dispatch. Using the axios HTTP library, each action sends one or more requests

to the API server. Depending on the response, the actions commit the appropriate mu-

tations to change the state. The INITIALIZE_APP() action checks the user session and

cluster capacity, and queries the available technology options. How the resulting data

gets processed will be discussed below in the context of the particular component. The

CHECK_PROJECT_NAME_AVAILABILITY() action uses the name parameter to check if the

name is still available to the user. The third and final one is the CREATE_PROJECT() ac-

tion, which sends the project specification to the API server. After the successful project

creation, it commits the mutation of the createdProjectUrl so that the respective compo-

nent can display a link to the new project. In addition, the store actions allow incrementing

a load counter for each request to the API server. When an API request gets completed,

the counter gets decremented again. Also, the catch() blocks catch any errors and then

execute the SET_ERROR() mutation so that components can notify the user that something

went wrong.

Components

A great advantage of component-based frameworks is that you can easily reuse the individual

components. That can pay o↵ even in smaller projects like this one since, for example, the

form components repeat themselves. In addition, the framework allows you to bind the en-

tered data directly in the script without having to work inconveniently with query selectors.

All components lie in the /src/components/ directory. The App.vue component repre-

sents the root component of the SPA since it comprises a div with the ID app as its topmost

element. When building the SPA, this div gets injected into the /public/index.html page.

The App.vue component’s script implements the mounted() method, which automatically

executes once the component is loaded into the virtual DOM. It dispatches the previously

mentioned INITIALIZE_APP() action. Depending on the state, the component displays the

Welcome.vue or the CreateProject.vue component. Also, it shows the Footer.vue and

NavBar.vue components in any case. The latter receives the login status from the store

and, if applicable, the username. The NavBar component can then display the username

and a logout link to the logout endpoint of the API server.

The Welcome.vue component only displays text and a button. The latter can take di↵er-

ent forms depending on the state. After the App.vue component dispatched the initial-

ization action, the page is in a loading state until the requests have been answered. The

Welcome.vue component represents this state by using the b-spinner component inside

of the button. After loading is complete and there was no error, the component either dis-

plays the “Log in with GitLab” or “Configure Your Project” button. It can also happen that
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it shows an infobox instead of the button. That is always the case if an error has occurred

or the cluster capacity is no longer su�cient.

The CreateProject.vue component lets the user specify the project as well as the tech-

nology stack. The page mainly consists of an input form, a checkbox to confirm the terms

of use, and a button. In addition, it implements a so-called modal that displays the terms of

use in an overlay and an output field that informs the user about the project creation. The

following table 5.1 shows the implemented components on which the input form relies.

Component Input InputSelect InputCheckbox

Input Type Text Dropdown List Checkbox

Properties

label

value

placeholder

valid

debounce

label

value

tooltip

options

label

value

tooltip

link

Events input input input

Table 5.1: Individual components for the CreateProject page.

What stands out is that all of them implement and emit the input event when the user

makes an input. Also, each component includes the value property. The reason is that

components like the CreateProject page can now bind a local variable to, for example,

the Input component using the v-model directive (see listing 5.3). Accordingly, both

values are always synchronized. Other notable properties of the Input component are the

valid and debounce values. The former is used to indicate that the desired project name

is not available anymore. If this value is not true, the Input component will display its

text area with a red border and give a brief hint that the name has already been taken.

The debounce value ensures that the input event is not emitted immediately with every

character input but with a delay. In the listing 5.3, the component emits the event as soon

as the user has not entered any characters for 800 milliseconds. That reduces the number

of requests to the API server and, accordingly, the number of requests to the GitLab and

Kubernetes API servers.

1 <Input

2 label="Name"

3 placeholder="Your project s name"

4 :valid="validProjectName"

5 debounce="800"
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6 v-model="projectName"

7 />

Listing 5.3: Using the Input component within the CreateProject component’s form. (Cre-

ateProject.vue)

Containerizing The Web App

Similar to the backend API server, the web app also needs to be containerized so that it can

run inside of the Kubernetes cluster. The di↵erence is that the Dockerfile will now rely on a

multi-stage build. That means that the Vue-CLI5 builds the static artifacts first, and then

these are copied to a second container image that provides a web server. In the end, the

resulting container image will be much smaller because it only builds upon the second image.

That is why one should try to find the smallest base image for the second build stage. The

author has chosen Nginx as the web server. The reasons are its popularity, simplicity, and

availability of a small container image (namely the version based on Alpine Linux6). Copying

between the individual build stages works by naming these stages. In this case, the first stage

is called BUILDER (through the FROM node:12.19.0-buster AS BUILDER command) and

the second stage explicitly copies from the previous one by setting the --from=BUILDER

flag in the COPY command.

With the help of the dotenv package7, environment variables can be set via the .env

file. The Node.js runtime will load these variables into the process.env object when

the web app gets built. They are used to customize the footer and HTML meta tags.

However, this leads to the problem that the built container image is no longer customizable.

Environment variables no longer have any influence on the SPA and its static files when

starting a container.

5.1.3 Helm Package

The final step of the implementation is to prepare the Sca↵older application, both the fron-

tend and backend, so that administrators can easily install it in a Kubernetes cluster. For

this purpose, a Helm Chart is to be developed. According to the o�cial documentation, “a

Chart is [comparable to a] package [and] contains all of the resource definitions necessary to

run an application, tool, or service inside of a Kubernetes cluster” [85]. When the admin-

istrator installs the Chart in the cluster, then the running instance of the Chart is called a

5https://cli.vuejs.org/ (visited on 12/22/2020)
6https://github.com/nginxinc/docker-nginx/blob/master/stable/alpine/Dockerfile (visited on
12/22/2020)

7https://www.npmjs.com/package/dotenv (visited on 12/22/2020)
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release. There can be several releases of a Chart inside of the same cluster. In this case,

however, this is not desirable. Therefore, the Chart and the commands must be adapted so

that there is always only one release. Thus the Chart’s templates do not specify variables

to be derived for the namespace or name of resources. Instead, the Readme comprises the

command for installing the Chart with a concrete release namespace.

In total, the Chart consists of 13 di↵erent Kubernetes resources. That may seem like a lot for

such a small application. However, this also includes the services, and configuration resources

such as Secrets, Configmaps, Roles, and Rolebindings. As specified in the architecture

chapter, there are three Deployments, each for the API server, the Redis database, and the

SPA’s web server. All resources are customizable via the values.yaml file, from which

the variables in the resource templates derive their values. So administrators can customize

these values to their individual needs and then install the Chart using the command from

the Readme.

A few decisions were made in the course of creating the Chart. The default service account

must be associated with a ClusterRole so that it can create namespaces. Also, this role

must hold all rights to almost all API groups. The reason is that service accounts can

only create new roles with certain rights if they have at least the same rights as the new

role. Accordingly, one service account can not escalate its privileges. So the rights of the

ClusterRole are very extensive.

The values.yaml file has been split into four categories, plus one category that would be

dropped if the Sca↵older’s container images were published. The latter is the

registryCredentials object, which defines the credentials for the GitLab registry, which

is where the two images for the Sca↵older application reside. Once the images get published

to Docker Hub or another publicly available registry, this object is no longer needed. The

other four categories consist of the userInterface , application , userNamespace , and

ingress object.

Each the userInterface and application object specifies the respective container image,

the image pull policy, and the resources object (known from a regular Kubernetes Deploy-

ment). Furthermore, the administrator can use the userInterface.enableGzipCompression

value to toggle the Gzip compression of the Nginx web server. For this purpose, the

nginx-configmap.yaml template was created, which contains an Nginx configuration file.

Since Vue.js’ artifacts are relatively large, it is recommended to turn on compression. Instead

of 1378,46 KB, the web server will transfer only 303,16 KB. The object for the application

server additionally comprises the application.env object. It specifies the information

about the GitLab and Kubernetes API server, and the Redis connection.

The userNamespace object defines the rules that should apply to user namespaces created
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by the Sca↵older app. That includes default values for the image pull policy, the storage

class for persistent volumes, and the TLS certificate issuer. Also, it contains the resource

quotas and limits for the user namespaces.

The last category, defined by the ingress object, describes the Fully Qualified Domain

Name (FQDN) and the TLS certificate issuer. Administrators can therefore set an individual

domain under which the Sca↵older application should be accessible. Of course, the DNS

entry must then also resolve to the IP address of the ingress controller.

Another challenge in developing the Chart involved the secrets. The cluster needs a

dockerconfig.json to pull an image, and the Redis database needs a redis.conf file

to secure the database with a password. For both purposes, the _helpers.tpl file im-

plements one function each to create the content for the respective secret. These functions

rely on Helm’s template functions8, for example, when converting values to their Base64

representation.

5.2 Challenges and Decisions

Most of the implementation decisions have already been addressed. However, some general

decisions were still made that should be briefly discussed here.

5.2.1 User Namespace Constraints

A user namespace must ensure that its users cannot break out of the namespace and thus in-

fluence other users or even the entire system. This property is achieved via role permissions.

Chapter 5.1.1 has already mentioned that the Sca↵older API server creates a role for this

purpose, which it then associates with the namespace’s default service account. The defini-

tion of the role resource has become quite extensive, as it is not possible to exclude individual

resource types. For example, if a role is not to have access to pods, the definition must in-

stead explicitly name all other resource types from that API group. This case, unfortunately,

occurred with the most comprehensive API group, the core group, because it includes the

Namespace resource. Users should only be given the right to execute methods on names-

paces with the get, list, watch, and delete verb. As a result, all desired resource types of the

core API group, including all sub-resource types like services/proxy , had to be listed ex-

plicitly. That ensures that users cannot change the namespace metadata, but can still delete

their own (and only their own, since users represent a namespace-bound role) namespace.

In addition to namespaces, users can perform all read methods on the ServiceAccount ,

PersistentVolume , ResourceQuota , LimitRange , RoleBinding , and Role resources.

8https://helm.sh/docs/chart_template_guide/function_list/ (visited on 12/23/2020)
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There was also the question of whether users should be allowed to change the Ingress

resource on their own, as this would risk clashing FQDN’s from multiple users. However,

users should be allowed to change ingress rules for their services independently. Therefore,

no further adjustment is made to the role permissions, as the permissions system cannot

selectively exclude the modification of the ingress FQDN.

In addition, a namespace must adhere to certain physical and quantity-related resource

limits, or quotas. The ResourceQuota object enforces these namespace constraints. The

physical quotas refer to the CPU, memory, and storage. That means that, for example,

the CPU usage sum of all pods in a namespace cannot exceed the defined CPU quota. The

quantity-based constraints, on the other hand, refer to the resource types themselves. In this

case, the number of PersistentVolumeClaims and Pods should be limited. On the other

hand, users can theoretically create all other resources in unlimited numbers. In particular,

limiting the number of pods within a namespace is important because the cluster can only

manage a finite number of pods and because there are no lower limits on the resources of a

pod - but more on that later.

A Deployment, or any other resource that creates pods, includes the resource requirements

in its container specification (namely the resources object). On the one hand, there is

the resources.requests object, which represents the guaranteed physical resources and

after which the kube-scheduler decides on which node it will create the pod, or whether

it can create the pod at all. Furthermore, there is the resources.limits object, which

specifies the degree to which resources are allowed to burst out until they are throttled (or

terminated if too much memory has been allocated). That means that, by specifying higher

limits, physical resources can be overcommitted. This is especially useful if you expect

application utilization to fluctuate. Suppose a namespace is limited to 1000 millicores. A

user deploys two pods which each request 500 millicores. Assuming that a pod runs at 75%

utilization on average but has occasional peaks, for example, a 25% higher limit might make

sense. That results in better overall utilization of the cluster. However, it is di�cult to

find the appropriate values for the requests and limits directly for the current environment.

It gets even more di�cult when you consider the update strategy of deployments. For

example, if a deployment specifies RollingUpdate as the strategy, then at least one replica

must be added during the update process. If the quotas are too low, this quickly leads to

problems and pending statuses. The default values have to be evaluated and tuned with

higher utilization and especially with more active usage. Therefore, the quota values in the

Helm Chart are chosen subjectively for now.

Due to the fact that users must now always explicitly specify the resource requests and limits

in their deployments, the Sca↵older API server should additionally apply a LimitRange

object for each newly created namespace. It sets default values for the resources.requests

59



and resources.limits objects within deployments. Also, it gives the ability to specify

maximum and minimum values. Actually, the minimum values should be specified to prevent

users from creating too many containers in their namespace. However, in the course of the

work, it turned out that the TLS certificate issuer creates the pod that requests the certificate

inside of the user namespace. This pod is scheduled with very low resource requests and

would thus violate the LimitRange . Therefore, the author decided to solve the problem

exclusively with the already mentioned quantity-based restriction of pods.

5.2.2 Frameworks and Databases for the Technology Options

The requirements only expect the technologies for the demonstration application to be “com-

mon”. The author understands this to mean that the technologies to be used should be

widespread and popular. The requirements already indicate possible options, namely the

programming languages and the databases. However, the author made the final decision

for the individual languages, frameworks, and databases at his own judgment. Various

sources9 10 11, including the number of stars on GitHub, were used for this purpose, as well

as the subjective assessment of the popularity of individual technologies. The Sca↵older app

finally implements the technologies shown in table 5.2.

User Interface Application Data Storage

None

VanillaJS

Python (FastAPI)

Node.js (Express)

Java (Javalin)

Java (Spring Boot)

Go (Fiber)

In-Memory (Application-specific)

Redis

MySQL

MongoDB

Table 5.2: Technology stack choices

The Java template is the only case where two di↵erent frameworks are implemented – a mi-

croframework (Javalin) and a full-stack framework (Spring Boot). At first, only the Spring

version was to be implemented, as the author assumed that its popularity would be partic-

ularly high. However, di�culties turned out. A single template had to be implemented for

each database connector. This has already been addressed in chapter 5.1.1. Furthermore,

the Spring application is di�cult for beginners to understand and especially to debug in

a cluster environment, and generally, the resource usage is relatively high. Therefore, the

Javalin template was added afterward.

9https://insights.stackoverflow.com/survey/2020 (visited on 12/28/2020)
10https://db-engines.com/en/ranking (visited on 12/28/2020)
11https://www.techempower.com/benchmarks/ (visited on 12/28/2020)
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5.2.3 Container Image Building

The repositories that the Sca↵older app creates contain a .gitlab-ci.yml file in their root

directory. It defines the four stages for the continuous integration and deployment pipeline.

Overall, it includes the build, deploy, cleanup, and shutdown stages. The GitLab runners

automatically execute the first two stages as developers push new code into the repository.

The runners themselves run with Docker as containers.

The usual method of building images inside a Docker container is using Docker-in-Docker

(dind), which means launching the Docker binary as a container image. However, this has

two drawbacks. First, it poses security risks because the Docker container must launch

with privileged rights. So it would have access to the host system. And secondly, it degrades

performance, not least because the Docker daemon has to be started first. A good alternative

is Kaniko12. It is a tool to build container images within container environments without

depending on the Docker daemon. Accordingly, the Kaniko image can also be executed

entirely in userspace. For the reasons mentioned above, the pipeline thus uses Kaniko instead

of dind. It also uses Kaniko’s layer caching feature, which again leads to a considerable time

advantage during the build.

The deploy stage then applies all Kubernetes manifests in the cluster using the

bitnami/kubectl container image. Furthermore, the user can manually run the cleanup

stage to delete all these applied manifests again. The shutdown stage can also be executed

manually and deletes the namespace from the cluster. This step is not reversible and is used

to free up capacity from the user side when the project is finished.

5.2.4 Reverse Proxy

The Sca↵older app exposes two services. One for the API server and one for the Nginx web

server. Both services should be accessible under the same physical address. In this case, it is

the address of the Ingress controller, which acts as a reverse proxy. The Ingress resource o↵ers

name-based virtual hosting, which means routing HTTP requests to multiple hostnames on

the same physical server. However, the Sca↵older website accessed by the browser would

then have to send requests to multiple domains, resulting in what is known as cross-origin

resource sharing (CORS)13. This would require additional headers and HTTP methods to

be implemented. Therefore, the author decided to use a simpler alternative based on the

HTTP path. As soon as the Ingress controller receives a request that starts with the /api

path, it forwards it to the API server. All other requests under the / path get forwarded

to the Nginx server. To avoid security risks from the SPA’s script, the API server sets the

12https://github.com/GoogleContainerTools/kaniko (visited on 12/29/2020)
13https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS (visited on 12/29/2020)
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session cookie with the HttpOnly flag.

However, path-based routing causes di�culties during development. If the developer starts

both servers locally at di↵erent ports, then the browser perceives them as di↵erent origins.

That again leads to CORS. However, the SPA should not know under which domain it is run-

ning, not least because administrators cannot set a “host” environment variable for the Nginx

container. Therefore, for developers, the /sources/frontend/local-dev-reverse-proxy

directory contains a Node.js module, which can be started via the command npx dprox .

It starts a local reverse proxy that can be configured via the proxy.config.js file. De-

velopers can now run both servers locally, guaranteeing the same behavior as when running

them in a cluster.

5.2.5 StatefulSet

The Sca↵older project initially also required StatefulSets to be covered as a Kubernetes re-

source. This type of resource is particularly useful for scaling databases. In order to include

a simple example of StatefulSets, it was necessary to find a database that could scale easily.

This was the first challenge, as databases are generally di�cult to scale. After some tests,

the decision was made to use Redis (see /preparation/redis-demo/deployment-files

directory). However, implementing the database connectors for a replicated database and dif-

ferent languages proved to be di�cult. In addition, the manifest files are relatively extensive,

as they contain scripts and ConfigMaps that configure the replicated database. Beginners, in

particular, would feel overwhelmed by the large number of files, configuration artifacts, and

new concepts of headless services. In addition to the newly introduced Kubernetes concepts,

users also need to learn the database-specific concepts regarding horizontal scaling – in this

case, Redis replication. However, the purpose of this work is to flatten the learning curve

and not unnecessarily introduce many new concepts. Therefore, the decision was finally

made to remove the StatefulSets from the requirements.

5.2.6 Beta Phase

One goal was to develop a functioning app as quickly as possible so that we could start the

beta phase quickly and gather feedback. That was well worth it, as valuable feedback could

be incorporated during the implementation period. Therefore, many thanks to Professor

Kratzke for making the beta phase possible and for contributing helpful suggestions.

The user interface was revised and simplified in the course of the feedback. Users can now no

longer set the GitLab project visibility themselves. It is always set to private by default. The

tooltips that contain hints about the usage and usefulness of individual layers also received

links to the documentation of the Kubernetes resources used. In addition, the configuration
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page includes another category “Advanced Option” in a dropdown area. Users who have

advanced requirements can add persistence and asynchronous or scheduled jobs manually in

this area. The initial smaller list of options makes beginners less overwhelmed, the project

size becomes smaller, and fewer resources will be needed.

The generated README.md has received an additional chapter “Connecting to the cluster”

to also address options such as the Kubernetes IDE “Lens”. Feedback also came in regarding

the project structure. For larger projects, developers quickly lose track of the Kubernetes

manifests if they are located in each layer’s subdirectory and have the same name. Therefore,

the Sca↵older app now creates an additional directory for the manifest files with a distinct

naming scheme. The “Project Structure” chapter mentions the used Kubernetes concepts

and adds links to their documentation.

Some consistency issues in the .gitlab-ci.yml file and Dockerfiles have also been detected

during the beta. Therefore, the .gitlab-ci.yml file now includes a variable object that

lists all versions for both the kubectl image and the versions for the container images to

be built. Also, all Dockerfile templates were checked for their image tag. The Sca↵older

app now only generates Dockerfiles that use a small image version with alpine or slim in

their tag.

5.3 Limitations

Unfortunately, some architectural decisions turned out to be limitations in the course of the

work. The following sections thus explain the e↵ects of individual decisions.

5.3.1 Cohesive Demo Application

The interconnected layers of the demonstration app limit the user’s requirements. For exam-

ple, the Sca↵older app always requires the application layer to be selected. That means that

there is always an application server with which the other layers interact. So users cannot

configure a project that only requires a simple HTML website. Or they can’t configure a

project that requires only the periodic execution of a container. Also, the Sca↵older app

only allows for one database. What about the case when a user wants to use a SQL-based

database and, additionally, needs a Redis instance for caching?

There should have been a more intense discussion about the cohesive example with the

CRUD app from the beginning. Its pros and cons should have been evaluated because

this specific use case makes the generated code more complicated than it should be. That

could potentially lead to confusion and increased onboarding time for users. Moreover, the

question arises whether it makes sense to generate a full example, considering that users
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would adapt the source code to their own needs and delete most of it again afterward. It

also complicated the development by requiring unnecessary bugs to be fixed. For example,

there were problems with database connection libraries, of which not all were implemented

in a thread-safe manner. This problem had to be solved to make the Add-Many-Names and

Cleanup-Names jobs work properly since they send many requests in a short time.

5.3.2 Maintainability of the Templates

The cohesive use case also results in a larger maintenance e↵ort for the Sca↵older app.

The codebase is larger, and, most importantly, there are significantly more dependencies

in the generated apps. Updating the source code and dependencies of templates would

only be possible with automated testing, as there are too many di↵erent combinations

for developers to test. Manual modification and testing would look like this: Render

the template to create the project artifacts; Modify the source code or/and dependencies;

Test for the correct functioning of the CRUD app; Merge the changes into the template.

However, there are no automated tests for this process, only the Postman Collection (see

/sources/Backend/api/postman_collections directory) for manual testing of the CRUD

App endpoints.

5.3.3 Dependency Locking

Another problem arose with the dependencies for Node.js applications. Typically, a file

records the versions of packages so that they do not di↵er between di↵erent developers and

the production system. Therefore, this so-called lock file should also always be kept in the

Git repository. However, the problem is that the templates for these lock files include all

dependencies. The Sca↵older app then filters out the unneeded dependencies as soon as

the source code of the demonstration app gets generated. However, in the case of Node.js,

this is not possible or only with a disproportionate e↵ort. The Node package manager

(npm) requires two files: package.json , which specifies the project and dependencies, and

package-lock.json , which sets the versions of the dependencies and their dependencies. If

only the package.json file is present, the package manager always installs the latest minor

version (according to the SemVer14 scheme). Only by means of the package-lock.json

file, the versions can be determined reliably. However, in this case, the file consists of almost

1700 lines and numerous dependencies. The creation of a template for the lock file is thus

connected with high e↵ort. The author does not see the e↵ort as justified and decided to

leave the template unedited. That, in turn, means that the demonstration application for

Node.js also installs dependencies that are not needed.

14https://semver.org/ (visited on 12/30/2020)
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5.3.4 Binary Files

Another limitation is that the templates must be formatted in UTF-8 so that the template

engine can render them. As a result, for example, the Maven wrapper for the Spring template

and favicons for the user interface cannot be rendered. The disadvantage is not particularly

bad, but it should still be mentioned here.

5.3.5 Single-Page Application

Chapter 5.1.2 on containerizing the web app has already touched on the fact that after

building the Nginx container image, the source code, and thus the SPA is static. Within

the Helm Chart, an administrator can no longer do any customization. This leads to the

problem that information like the organization name, the imprint, links, and the terms of

use cannot be changed by future users of the Chart. If users still want to do this, they have

to pull the source code and rebuild the container image.

In addition, the SPA now introduces a second place where the state must be managed. The

strict separation of frontend (SPA) and backend (API server) resulted in a larger interface

than actually necessary. For example, the SPA sends three separate requests to the API

server when it gets opened in the browser. Of course, the SPA then has to manage the state

of these requests. In hindsight, the author feels that it might have made more sense to work

with dynamic templates rendered and delivered by a monolithic web server. That would

reduce the HTTP interface and state management overhead.

5.3.6 Certificate Issuing With Let’s Encrypt

The number of new projects essentially is limited to a maximum of 50 per week when

using Let’s Encrypt as the certificate authority. That is because Let’s Encrypt issues new

certificates for only up to 50 domains per week for a single account. The problem here is that

the responsible cert-manager runs centrally in the cluster under a single email address. To

avoid the limit, users could also instantiate a cert-manager in their own namespace, though

that would decrease their available resource contingent. And it would not only decrease it

for the time of the issuing procedure but for as long as the user wants the domain to be

secured because the cert-manager also manages the renewal of certificates.
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6 Testing the Requirements Fulfillment

Now that the implementation is complete, this chapter evaluates whether the bachelor thesis

meets the requirements. The analysis uses the tables created in Chapter 3 for the functional

and non-functional requirements. Each entry includes a priority, description, and fit crite-

rion. The author then evaluates the fulfillment using the criterion. In order to stay within

scope, this chapter does not cover the evaluation process for each requirement. With 42

requirements, that would be significantly too much. Therefore, the following paragraphs

provide an overview of the requirements that were met and those that were not, or only

partially met.

The good news is that the implemented solution fulfills all requirements with the priority

“must-have”. These alone were 22 requirements. In addition, the two “won’t-have” require-

ments, F10 and F11, are not considered further as they were excluded from the outset. Of

the functional requirements, only one was not fulfilled. It is requirement F8 with the priority

”could-have”, which requires the solution to delete inactive namespaces automatically. Ful-

filling this requirement has proven to be time-consuming during the course of the work, as

there is no interface that returns the last activity of namespaces in a simple way. A possible

solution would need to check each namespace individually. This process requires the check

of each resource’s last update time and if it is within the desired “active period”. Checking

the activity of pods is not su�cient since usually higher-level resource types manage these.

There is also the added di�culty that users can install CronJobs and thus keep the names-

pace active forever. That would then require a separate rule. Overall, it can be said that

finding rules that describe the inactivity of a namespace is an elaborate process.

Of the non-functional requirements, a total of two were not met and one was only partially

met. However, these are not explicitly listed in the task definition of the bachelor thesis and

therefore only have the priority “could-have”. Requirement NF10 requires that the solution

shows the individual creation steps to the user for transparency reasons. The idea was

that this would enable users to understand what is actually happening in the background

and thus increase the learning e↵ect. However, the fulfillment of this requirement would

have needed either WebSockets or server-sent events. In addition, the architecture would

have to be extended to include an event queue in which each service module publishes the

completed tasks. The user would then subscribe to that queue through the SPA. However,
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when it turned out that the creation of a new namespace and the GitLab project happens

almost instantaneously, the author decided that it makes no sense to print so many events

to the user without explanation.

The next unmet requirement is NF11. It says that the solution should be well tested using

automated tests. The required criterion is full test coverage of unit tests for the controller

endpoints. Testing of all handlers would also cover the service modules since they are called

by the handlers. The service modules, in turn, rely on communication with external inter-

faces (GitLab and Kubernetes). In order for the service modules to be meaningfully tested

without external influences or problems, the unit tests must mock the external interfaces.

This problem is usually solved via dependency injection. As soon as modules are initialized,

they are provided with synthetic objects that mock external interfaces. However, the author

did not gain any experience with this principle before the bachelor thesis and did not con-

sider it in the initial software architecture. Instead, the author took other measures to test

the Sca↵older solution. For testing the controller endpoints, a Postman collection resides in

the /sources/Backend/api/postman_collections directory. It consists of queries with

sample parameters, or bodies, for each endpoint of the Sca↵older API. After implementing

major features, the author performed system tests. That means that the author fully inte-

grated the Sca↵older solution into a production-like system environment and tested that the

requirements were met. That includes the entire process from logging in to forwarding the

user to the GitLab project and testing the live demonstration app. During system testing,

the author manipulated the external systems to cover as many cases as possible. For ex-

ample, already occupied project or namespace names were entered, or the cluster capacity

was artificially reduced. The system tests were then followed by the beta test with external

persons. As chapter 5.2.6 describes, the beta test was mainly for validating and adapting

non-functional requirements in order to increase acceptance. Lastly, the creation of the tem-

plates presented a challenge in this work. Therefore, the scaffolder module saves the

rendered source code locally when the Sca↵older app does not run inside the Kubernetes

cluster. Developers can thus more easily validate and test changes to the template without

actually having to create a new GitLab project.

The last requirement that is only partially fulfilled is NF12. It requires the individualiza-

tion of the user interface. Chapter 5.3.5 about the limitations has already explained the

implementation of this requirement and its limitation.
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7 Conclusion

The core task consisted of answering two questions. How can an organization o↵er a container

environment to its members in a simple way and with as little administrative e↵ort as

possible? And the second question: How can the entry hurdle and the learning curve for

containerization and container orchestration be flattened? This bachelor thesis answered

both questions with the help of a software solution.

7.1 Outcome

The developed web app implements all initial functional requirements from the task defi-

nition. It implements a self-service portal where users can request new Kubernetes virtual

clusters. Without the intervention of administrators, the organization can provide com-

puting power to its members. Users can directly authorize themselves using their already

existing GitLab account. The so-called Sca↵older solution creates the new virtual clusters in

the form of new restricted namespaces. The restrictions provide the organization with the

ability to limit the computing power provided. They also serve for restricting the rights of

users within the server cluster. This self-service portal gives users an environment in which

they can run containers and also make their services publicly accessible.

The portal answers the first question but does not flatten the learning curve of containeriza-

tion and container orchestration. On the contrary – simply providing a Kubernetes cluster

would pose a new challenge to users. Therefore, during the creation process, the user has

the option to select a technology stack to be used in the project. At its core, the stack

consists of three layers. The user interface layer defines the technology with which the web

app or website will be developed. The application layer represents a web server with HTTP

API. And the data storage layer defines the database that will persist the application’s state.

Using this project specification, the Sca↵older App can additionally create a new GitLab

project on behalf of the user. This project contains sample source code for an application

that demonstrates how each Kubernetes principle works. The concrete example allows users

to understand the Kubernetes manifest files. The project’s Readme file guides users. More-

over, the project includes a configuration for the CI/CD pipeline. For each code update, the

pipeline rebuilds the application containers and pushes them to the image registry. After
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the images are published, the pipeline also executes the appropriate commands to apply the

Kubernetes manifests from the repository in the cluster. These principles introduce users to

Kubernetes and promote a DevOps culture.

However, di�culties also arose during the course of the work. For example, the cohesive

demonstration app that the Sca↵older app creates may limit the possible use cases for

new projects. In addition, the demonstration app itself has a certain size. Users need to

familiarize themselves with its code and later discard it in favor of their own application.

Also, the concrete demonstration example makes it more di�cult to maintain the templates.

Another limitation arose from the choice of a single-page application. Administrators cannot

customize the frontend to their own organization’s needs through environment variables while

installing the Sca↵older app. That is because the single-page application consists only of

static code that must be built beforehand.

7.2 Outlook

So far, the solution has only been tested with a few people. Moreover, the beta phase only

made use of a single-node cluster. In the future, more people with di↵erent use cases should

test the solution and, especially, evaluate it. Only with more feedback, the Sca↵older app can

be further developed e�ciently. What developers should question for future improvement are

the choices of the single-page application and the cohesive demonstration application.

In addition to the already implemented functions, the solution o↵ers numerous extension

possibilities. The following list gives a brief overview of thoughts and ideas for future fea-

tures:

Namespace Limits Per User : Actually, the bachelor thesis excluded the requirement

for namespace limits per user because the solution should be implemented stateless.

The statelessness was achieved. But the Sca↵older app adds the user’s email address

in the metadata of each newly created namespace. Users cannot modify this metadata.

Thus, the Sca↵older App can use the metadata to check how many namespaces a user

already owns and limit the number accordingly.

Admin Notifications on Events: It may happen that the cluster capacities are ex-

hausted, or other incidents occur. In that case, the solution could automatically notify

the administrator via email.

Automatic Container Image Tag Updates: In its current state, Kubernetes does not

detect when an image changes. The CI pipeline does build the container images with

each new code push, but these are not necessarily deployed automatically. The gen-
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erated Readmes explain to users how to get Kubernetes clusters to download the new

image. It would be better to have a solution that customizes the Kubernetes manifests

within the pipeline so that deployments get updated. Possible solutions could involve

kustomize1 or a make file.

Automatic Deletion of Inactive Namespaces: As described in Chapter 6, finding rules

for when a namespace is considered inactive is an elaborate process. Also, the imple-

mentation is anything than trivial since each namespace and resource must be checked

individually. What might be more practical in the university’s case is to simply reset

the cluster after the end of each semester.

Supporting Multiple Git Hosting Providers: So far, the Sca↵older app only supports

GitLab for creating a new project. But you could also use all kinds of other Git hosting

providers. For example, you could add GitHub and use its so-called actions for the

CI/CD pipeline. The templates would then have to include another GitHub-dependent

workflow file in addition to the gitlab-ci.yml file.

1https://kustomize.io/ (visited on 01/04/2021)
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Appendix

Hello World Service Example with Kubernetes

Listing 7.1: Kubernetes manifest file for the service, stateful set and ingress object of the

Hello World Service Example. (hello-world.yaml)

1 apiVersion: v1

2 kind: Service

3 metadata:

4 name: hello-world

5 spec:

6 ports:

7 - port: 80

8 targetPort: 80

9 selector:

10 app: hello-world-pod

11 ---

12 apiVersion: apps/v1

13 kind: StatefulSet

14 metadata:

15 name: hello-world-stateful-set

16 spec:

17 selector: # for the underlying replica set controller

18 matchLabels:

19 app: hello-world-pod

20 serviceName: hello-world # must be created before the stateful set

21 template: # pod template

22 metadata:

23 labels:

24 app: hello-world-pod

25 spec:

26 containers:
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27 - name: hello-world-container

28 image: "registry-address/hello-world:0.0.1"

29 env:

30 - name: GREET_NAME

31 value: "Gandalf the Grey"

32 ports:

33 - containerPort: 80

34 volumeMounts:

35 - name: data-volume

36 mountPath: /hello-world-service/data

37 volumeClaimTemplates:

38 - metadata:

39 name: data-volume

40 labels:

41 app: hello-world

42 spec:

43 accessModes: ["ReadWriteOnce"]

44 resources:

45 requests:

46 storage: "100Mi"

47 ---

48 kind: Ingress

49 apiVersion: networking.k8s.io/v1

50 metadata:

51 name: hello-world

52 spec:

53 rules:

54 - host: hello-world.io

55 http:

56 paths:

57 - path: /

58 pathType: Prefix

59 backend:

60 service:

61 name: hello-world

62 port:

63 number: 80 # port of the service

64 tls:

73



65 - hosts:

66 - hello-world.io

67 secretName: hello-world-io-certificate # must be issued beforehand

Requirements

The requirements appendix contains the functional and non-functional requirements. These

were elaborated in the Requirements Analysis chapter and are listed here with a unique iden-

tifier (F: Functional Requirement; NF: Non-Functional Requirement) in tabular form. They

also indicate the priority (M: Must-Have; S: Should-Have; C: Could-Have; W: Won’t-Have) in

the “P” column. The Testing the Requirements Fulfillment chapter uses the “Fit Criterion”

column’s description to evaluate the fulfillment of both the functional and non-functional

requirements. Depending on whether the requirement was fulfilled, the “F” column is filled

with a y (yes), n (no), or p (partially).

Functional Requirements

ID P Description Fit Criterion F

F1 M Users shall be able to authen-

ticate themselves via GitLab’s

OAuth 2 interface

The solution uses the university’s

GitLab server for authentication

via OAuth 2

y

F2 M The solution shall create GitLab

projects on behalf of an authenti-

cated user

After the successful authentication,

the user can create a new GitLab

project with a chosen name through

the solution

y

F2.1 M The created GitLab project shall

contain access credentials for the

K8s cluster

The created GitLab project con-

tains an environment variable with

access credentials for the K8s clus-

ter

y

F2.2 M The created GitLab project shall

contain a CI/CD pipeline exam-

ple

The created GitLab project con-

tains a gitlab-ci.yml file with auto-

mated container image builds and

deployments

y

F2.3 S The created GitLab project shall

prevent secrets leakage

The created GitLab project makes

use of the .dockerignore and .gitig-

nore files to exclude secretive files

from being exposed

y
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Table 9 continued from previous page

ID P Description Fit Criterion F

F2.4 C Users shall be able to choose

a project description and the

project visibility

The solution o↵ers input fields for

the description and visibility, and

applies them to the GitLab project

y1

F2.5 M Users shall be able to select a de-

sired tech stack for the project to

be created

The solution o↵ers selectable tech-

nology options for the initial tem-

plate project based on a user inter-

face, application, and data storage

layer

y

F2.6 M The options for the desired tech

stack shall cover common lan-

guages

The technology options cover Java,

Node.js, and Python as selectable

languages

y

F2.7 M The options for the desired

tech stack shall cover common

databases

The technology options cover

MySQL, MongoDB, and Redis as

selectable databases

y

F2.8 M The options for the desired tech

stack shall cover typical K8s

workloads

The technology options cover K8s

Deployment, StatefulSet, Job, and

CronJob workloads

y2

F2.9 M The options for the desired tech

stack shall cover typical K8s ex-

posing methods

The technology options cover K8s

Service and Ingress resources, and

make the application reachable

from outside the cluster

y

F2.10 M The solution shall initialize the

created project with source code

according to the desired tech

stack

The solution initializes the project

with a template application consist-

ing of all selected technologies

y

F2.11 S The solution shall guide users

through the created project tem-

plate

The created GitLab project con-

tains a Readme file (Getting

Started) that describes the struc-

ture and setup process

y

F3 M The solution shall create names-

paces for an authenticated user

based on the project name

The solution creates a K8s names-

pace for the new corresponding

GitLab project

y

1The project visibility option got canceled, see section 5.2.6.
2The StatefulSet option got canceled, see section 5.2.5.
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Table 9 continued from previous page

ID P Description Fit Criterion F

F3.1 M Namespace users shall be re-

stricted in the usage of cluster re-

sources

The solution applies resource quo-

tas (CPU, memory, and storage) to

the namespace

y

F3.2 M Namespace users shall be con-

strained in the creation of single

resources

The solution applies limit ranges

and default values for the resources

object of deployments

y

F3.3 M Namespace users shall be able to

read and write cluster resources

only in their own namespace

The solution applies authorization

rules so that namespace users can

read and write cluster resources

only in their own namespace

y

F3.4 M The restrictions and constraints

for namespaces shall be config-

urable

The Helm 3 chart allows the cus-

tomization of values for the restric-

tions and constraints in namespaces

y

F3.5 M The solution shall create access

credentials for a service account

related to the created namespace

The solution creates a service ac-

count in the namespace and re-

trieves its access credentials

y

F4 M The solution shall expose the cre-

ated template project’s service at

a predictable address

The solution uses the namespace’s

name (which equals the project

name’s slug) as a subdomain of the

cluster domain to expose the service

y

F4.1 S When exposing a service, the so-

lution shall use TLS termination

The solution creates Ingress objects

with TLS certificates and relies on

cert-manager for certificate issuing

y

F5 M The solution shall allow the

project creation only if the name

is available

The solution checks the project

name and namespace name avail-

ability when creating a new project

y

F6 S The solution shall associate a cre-

ated namespace with a user/per-

son for administration purposes

The solution creates a namespace

with labels associated with the user

(e.g. email, GitLab ID)

y

F7 C The solution shall point out the

terms and conditions and require

the user to accept them

The solution requires the user to ac-

cept the terms and conditions for

the project creation

y

F8 C The solution shall automatically

delete inactive namespaces

The solution deletes namespaces af-

ter a certain time period of inactiv-

ity

n
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Table 9 continued from previous page

ID P Description Fit Criterion F

F9 C The solution shall o↵er users easy

resetting and deletion of a names-

pace

The created GitLab project’s CI

pipeline contains two manual stages

for resetting and deleting of the

namespace

y

F10 W The solution shall support inter-

nationalization

The solution’s user interface and

readme supports multiple lan-

guages

n

F11 W The solution shall restrict com-

munication between namespaces

The solution applies network poli-

cies for the namespace’s resources

n

Table 9: Functional Requirements

Non-Functional Requirements

ID P Description Fit Criterion F

NF1 M The solution shall be distributed

as a Helm 3 chart

A Helm 3 chart is available for the

solution

y

NF2 M The solution shall be installable

in any K8s Cluster via a Helm 3

chart

The Helm 3 chart is customizable to

fit individual (cluster) requirements

y3

NF3 M The solution’s backend shall be

written in Python

The solution’s backend is written in

Python

y

NF4 M The solution shall be stateless to

be simple, horizontally scalable,

and resilient

The solution does not rely on per-

sistence like storage and does not

maintain a state over the names-

paces, users, and user projects

y4

NF5 S The solution shall work correctly

in case of a connection loss during

the creation process

The solution continues with the cre-

ation process during a connection

loss and writes the cluster informa-

tion in the repository’s Readme5

y

3Customization possibilities described in section 5.1.3.
4It does maintain a state over the user sessions. But since this is inevitable, the requirement is still considered
to be fulfilled.

5A more reliable and less confusing solution could be to automatically send the log and cluster information
via e-mail.
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Table 10 continued from previous page

ID P Description Fit Criterion F

NF6 S The solution shall not be granted

administrator rights for the

GitLab server

The solution only relies on the

rights of authorized GitLab users

y

NF7 S The solution’s authorization shall

be secure

The solution uses the server-side

OAuth 2.0 authorization code flow

without storing plain credentials on

client devices

y

NF8 S A created project shall work “out

of the box”

The solution creates a project con-

taining a demonstration applica-

tion that works immediately after

the creation

y

NF9 S The solution shall not rely on

K8s’ Custom Resource Defini-

tions (CRDs)

The solution does not create own

CRDs

y

NF10 C The creation process of the

project and namespace shall be

transparent to the user

The solution’s user interface prints

each step of the creation process

n

NF11 C The solution shall be well tested

with automated tests

The solution’s service endpoints

have full test coverage on unit tests

n

NF12 C The solution shall be white-

labeled

The solution o↵ers the customiza-

tion of logos, labels and terms and

conditions

p6

NF13 C The solution’s user interface shall

be usable on di↵erent screen sizes

The solution’s user interface is re-

sponsive to both mobile and desk-

top devices

y

NF14 C The solution shall create new

projects only if the cluster has

enough capacity available

The solution allows the project cre-

ation only if the deployment of the

demo application is possible

y

Table 10: Non-Functional Requirements

6The SPA’s environment variables can not be changed after building the source code. Thus customization
is possible only if rebuilding the SPA.
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Figure 9: Event storming to identify all activities and domains of a possible solution [76].
(Commands and policies omitted for space reasons.)
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